From 162f9f37b13dc812b328169d03361e87de960cd3 Mon Sep 17 00:00:00 2001 From: Nacim Date: Mon, 23 Jun 2025 15:17:29 +0200 Subject: [PATCH] Update app.py --- app.py | 31 +++++++++++++++++-------------- 1 file changed, 17 insertions(+), 14 deletions(-) diff --git a/app.py b/app.py index c6523ff..d7b45da 100644 --- a/app.py +++ b/app.py @@ -3,13 +3,15 @@ import logging import yaml from flask import Flask, request, jsonify, make_response +# Import des classes nécessaires de Presidio from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider -from presidio_analyzer.deny_list_recognizer import DenyListRecognizer +# Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) +# --- CHARGEMENT MANUEL ET EXPLICITE DE LA CONFIGURATION --- CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") @@ -18,31 +20,31 @@ try: with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") -except FileNotFoundError: - logger.error(f"Configuration file not found at {CONFIG_FILE_PATH}. Using default empty config.") -except yaml.YAMLError as e: - logger.error(f"Error parsing YAML configuration file: {e}. Using default empty config.") +except Exception as e: + logger.exception(f"Could not load or parse configuration file at {CONFIG_FILE_PATH}") + # En cas d'échec, on continue avec une config vide pour ne pas planter, mais le service sera limité. + config = {} +# On récupère les langues supportées depuis la config pour les utiliser partout supported_languages_from_config = config.get("supported_languages", ["en"]) logger.info(f"Languages supported according to config: {supported_languages_from_config}") +# Création du fournisseur de moteur NLP logger.info("Creating NLP engine provider...") nlp_engine_provider = NlpEngineProvider(nlp_configuration=config.get("nlp_engine_configuration")) nlp_engine = nlp_engine_provider.create_engine() logger.info(f"NLP engine created with models for: {nlp_engine.get_supported_languages()}") -# --- CORRECTION ICI --- -# On s'assure que le registry est initialisé avec les mêmes langues que le reste +# Création du registre de recognizers logger.info("Creating and populating recognizer registry...") registry = RecognizerRegistry() -registry.load_predefined_recognizers(languages=supported_languages_from_config) # On utilise la variable -logger.info(f"Recognizer registry loaded for languages: {supported_languages_from_config}") +# On initialise le registre avec TOUTES les langues supportées +registry.load_predefined_recognizers(languages=supported_languages_from_config) -# Ajout des recognizers personnalisés +# Ajout des recognizers personnalisés définis dans le YAML custom_recognizers_conf = config.get("recognizers", []) for recognizer_conf in custom_recognizers_conf: patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] - custom_recognizer = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], @@ -50,16 +52,16 @@ for recognizer_conf in custom_recognizers_conf: patterns=patterns, context=recognizer_conf.get('context') ) - registry.add_recognizer(custom_recognizer) logger.info(f"Loaded custom recognizer: {custom_recognizer.name}") -# Préparation de l'allow_list +# Préparation de l'allow_list (simple liste de mots) allow_list_config = config.get("allow_list", []) allow_list_terms = [item if isinstance(item, str) else item.get('text') for item in allow_list_config if item] if allow_list_terms: logger.info(f"Prepared {len(allow_list_terms)} terms for the allow list.") +# Initialisation de l'application Flask app = Flask(__name__) # Initialisation du moteur Presidio Analyzer @@ -67,7 +69,7 @@ logger.info("Initializing AnalyzerEngine with custom configuration...") analyzer = AnalyzerEngine( nlp_engine=nlp_engine, registry=registry, - supported_languages=supported_languages_from_config, # On utilise la variable ici aussi + supported_languages=supported_languages_from_config, # On s'assure de la cohérence ici aussi default_score_threshold=config.get("ner_model_configuration", {}).get("confidence_threshold", {}).get("default", 0.35) ) logger.info("AnalyzerEngine initialized successfully.") @@ -82,6 +84,7 @@ def analyze_text(): if not text_to_analyze: return jsonify({"error": "text field is missing or empty"}), 400 + # On passe directement la liste de mots à ignorer au paramètre 'allow_list' results = analyzer.analyze( text=text_to_analyze, language=language,