diff --git a/app.py b/app.py index d6384f4..96e82d5 100644 --- a/app.py +++ b/app.py @@ -5,7 +5,7 @@ from flask import Flask, request, jsonify, make_response from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider -# On importe les recognizers prédéfinis qu'on veut pouvoir utiliser +# On importe les classes des détecteurs prédéfinis que l'on veut pouvoir utiliser depuis le YAML from presidio_analyzer.predefined_recognizers import ( CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer, MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer @@ -19,7 +19,6 @@ logger = logging.getLogger(__name__) app = Flask(__name__) # --- Dictionnaire pour mapper les noms du YAML aux classes Python --- -# C'est ce qui nous permet de lire la liste 'recognizer_registry' du YAML PREDEFINED_RECOGNIZERS_MAP = { "SpacyRecognizer": SpacyRecognizer, "CreditCardRecognizer": CreditCardRecognizer, @@ -30,7 +29,6 @@ PREDEFINED_RECOGNIZERS_MAP = { "UrlRecognizer": UrlRecognizer, } - # --- Initialisation Globale de l'Analyseur --- analyzer = None try: @@ -50,23 +48,14 @@ try: # 3. Créer le registre de recognizers EN SUIVANT LE YAML logger.info("Creating and populating recognizer registry from config file...") registry = RecognizerRegistry() + supported_languages = config.get("supported_languages", ["en"]) # === DÉBUT DE LA CORRECTION MAJEURE === - # A) Charger les recognizers PRÉDÉFINIS listés dans le YAML - supported_languages = config.get("supported_languages", ["en"]) - for recognizer_name in config.get("recognizer_registry", []): - if recognizer_name in PREDEFINED_RECOGNIZERS_MAP: - recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name] - # On passe les langues supportées à chaque recognizer qu'on instancie - registry.add_recognizer(recognizer_class(supported_languages=supported_languages)) - logger.info(f"Loaded predefined recognizer: {recognizer_name}") - - # B) Charger les recognizers PERSONNALISÉS définis dans le YAML - custom_recognizers_conf = config.get("recognizers", []) - for recognizer_conf in custom_recognizers_conf: + # Étape A: On pré-construit tous les détecteurs personnalisés ("custom") définis dans la section 'recognizers' + custom_recognizers = {} + for recognizer_conf in config.get("recognizers", []): patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] - # On s'assure de ne pas recréer un recognizer prédéfini mais bien un custom custom_recognizer = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], @@ -74,8 +63,26 @@ try: patterns=patterns, context=recognizer_conf.get('context') ) - registry.add_recognizer(custom_recognizer) - logger.info(f"Loaded custom recognizer from YAML: {custom_recognizer.name}") + custom_recognizers[recognizer_conf['name']] = custom_recognizer + + # Étape B: On parcourt la liste 'recognizer_registry' pour activer les détecteurs demandés + for recognizer_name in config.get("recognizer_registry", []): + # Cas 1: Le détecteur est dans notre liste de détecteurs personnalisés + if recognizer_name in custom_recognizers: + registry.add_recognizer(custom_recognizers[recognizer_name]) + logger.info(f"Loaded custom recognizer from registry list: {recognizer_name}") + + # Cas 2: Le détecteur est un détecteur prédéfini connu + elif recognizer_name in PREDEFINED_RECOGNIZERS_MAP: + recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name] + # On crée une instance pour chaque langue supportée (en, fr) + for lang in supported_languages: + # CORRECTION : On utilise le mot-clé au singulier 'supported_language' + instance = recognizer_class(supported_language=lang) + registry.add_recognizer(instance) + logger.info(f"Loaded predefined recognizer '{recognizer_name}' for languages: {supported_languages}") + else: + logger.warning(f"Recognizer '{recognizer_name}' from registry list was not found in custom or predefined lists.") # === FIN DE LA CORRECTION MAJEURE === @@ -86,7 +93,6 @@ try: registry=registry, supported_languages=supported_languages ) - # L'allow list est chargée automatiquement par l'AnalyzerEngine analyzer.set_allow_list(config.get("allow_list", [])) logger.info("--- Presidio Analyzer Service Ready ---") @@ -95,6 +101,7 @@ except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") analyzer = None +# Le reste du fichier Flask reste identique... @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: @@ -103,17 +110,13 @@ def analyze_text(): try: data = request.get_json(force=True) text_to_analyze = data.get("text", "") - # Utiliser la première langue supportée comme langue par défaut si non fournie default_lang = analyzer.supported_languages[0] if analyzer.supported_languages else "en" language = data.get("language", default_lang) if not text_to_analyze: return jsonify({"error": "text field is missing or empty"}), 400 - results = analyzer.analyze( - text=text_to_analyze, - language=language - ) + results = analyzer.analyze(text=text_to_analyze, language=language) response_data = [res.to_dict() for res in results] return make_response(jsonify(response_data), 200)