diff --git a/app.py b/app.py index 24a0f67..983977f 100644 --- a/app.py +++ b/app.py @@ -5,100 +5,74 @@ from flask import Flask, request, jsonify, make_response from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider -from presidio_analyzer.predefined_recognizers import ( - CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer, - MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer -) +from presidio_analyzer.predefined_recognizers import SpacyRecognizer +# Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) +# Initialisation de l'application Flask app = Flask(__name__) -PREDEFINED_RECOGNIZERS_MAP = { - "SpacyRecognizer": SpacyRecognizer, - "CreditCardRecognizer": CreditCardRecognizer, - "CryptoRecognizer": CryptoRecognizer, - "DateRecognizer": DateRecognizer, - "IpRecognizer": IpRecognizer, - "MedicalLicenseRecognizer": MedicalLicenseRecognizer, - "UrlRecognizer": UrlRecognizer, -} - +# --- Initialisation Globale de l'Analyseur --- analyzer = None try: logger.info("--- Presidio Analyzer Service Starting ---") + # 1. Charger la configuration depuis le fichier YAML CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") + # 2. Créer le fournisseur de moteur NLP logger.info("Creating NLP engine provider...") provider = NlpEngineProvider(nlp_configuration=config) - logger.info("Creating and populating recognizer registry from config file...") + # 3. Créer un registre de recognizers VIDE + logger.info("Creating a clean RecognizerRegistry...") registry = RecognizerRegistry() - # === CORRECTION DÉFINITIVE : ASSURER UN REGISTRE PROPRE === - logger.info("Removing any default recognizers to ensure a clean slate...") - registry.remove_all_recognizers() - - supported_languages = config.get("supported_languages", ["en"]) - - # Construire les détecteurs personnalisés - custom_recognizers = {} - for recognizer_conf in config.get("recognizers", []): + # 4. Charger les recognizers personnalisés (définis sous la clé 'recognizers') + logger.info("Loading custom recognizers from YAML...") + custom_recognizers_conf = config.get("recognizers", []) + for recognizer_conf in custom_recognizers_conf: patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] - custom_recognizers[recognizer_conf['name']] = PatternRecognizer( + custom_recognizer = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], supported_language=recognizer_conf['supported_language'], patterns=patterns, context=recognizer_conf.get('context') ) - - # Activer les détecteurs listés dans la configuration - for recognizer_name in config.get("recognizer_registry", []): - if recognizer_name in custom_recognizers: - registry.add_recognizer(custom_recognizers[recognizer_name]) - logger.info(f"Loaded CUSTOM recognizer: {recognizer_name}") - - elif recognizer_name in PREDEFINED_RECOGNIZERS_MAP: - recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name] - for lang in supported_languages: - # Le SpacyRecognizer est un cas spécial, il n'a pas de paramètre de langue - if recognizer_class == SpacyRecognizer: - if 'SpacyRecognizer_added' not in locals(): # Pour ne l'ajouter qu'une seule fois - registry.add_recognizer(recognizer_class(supported_entities=config.get("spacy_entities", []))) - logger.info(f"Loaded PREDEFINED singleton recognizer: {recognizer_name}") - SpacyRecognizer_added = True - else: - instance = recognizer_class(supported_language=lang) - registry.add_recognizer(instance) - if recognizer_class != SpacyRecognizer: - logger.info(f"Loaded PREDEFINED recognizer '{recognizer_name}' for languages: {supported_languages}") - - else: - logger.warning(f"Recognizer '{recognizer_name}' from registry list was not found.") + # On ajoute UNIQUEMENT les détecteurs customs définis pour le français + if recognizer_conf['supported_language'] == 'fr': + registry.add_recognizer(custom_recognizer) + logger.info(f"Loaded and registered custom recognizer: {custom_recognizer.name}") + # 5. Ajouter le SpacyRecognizer, qui est un cas spécial pour les entités de base + registry.add_recognizer(SpacyRecognizer(supported_language="en")) + registry.add_recognizer(SpacyRecognizer(supported_language="fr")) + logger.info("Registered SpacyRecognizer for 'en' and 'fr'.") + # 6. Créer l'AnalyzerEngine logger.info("Initializing AnalyzerEngine with custom components...") analyzer = AnalyzerEngine( nlp_engine=provider.create_engine(), registry=registry, - supported_languages=supported_languages + supported_languages=config.get("supported_languages", ["en", "fr"]) ) analyzer.set_allow_list(config.get("allow_list", [])) logger.info("--- Presidio Analyzer Service Ready ---") + logger.info(f"Final supported languages in registry: {registry.supported_languages}") except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") analyzer = None -# Le reste du fichier Flask est identique +# Le reste du fichier Flask reste identique... @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500