Update app.py

This commit is contained in:
Nacim
2025-06-23 14:32:02 +02:00
committed by GitHub
parent 5b797e64c3
commit 360202f5a8

70
app.py
View File

@@ -3,37 +3,37 @@ import logging
import yaml import yaml
from flask import Flask, request, jsonify, make_response from flask import Flask, request, jsonify, make_response
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry # Import des classes nécessaires de Presidio
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
from presidio_analyzer.nlp_engine import NlpEngineProvider from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_analyzer.recognizer_registry.recognizer_registry import RecognizerRegistry
from presidio_analyzer.recognizer_registry.deny_list_recognizer import DenyListRecognizer
# Configuration du logging pour un meilleur débogage # Configuration du logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
# --- CHARGEMENT MANUEL ET EXPLICITE DE LA CONFIGURATION --- # --- CHARGEMENT MANUEL ET EXPLICITE DE LA CONFIGURATION ---
# Chemin vers le fichier de configuration, défini par la variable d'environnement
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
config = {}
try: try:
with open(CONFIG_FILE_PATH, 'r') as f: with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f) config = yaml.safe_load(f)
logger.info("Configuration file loaded successfully.") logger.info("Configuration file loaded successfully.")
except FileNotFoundError: except FileNotFoundError:
logger.error(f"Configuration file not found at {CONFIG_FILE_PATH}. Exiting.") logger.error(f"Configuration file not found at {CONFIG_FILE_PATH}. Using default empty config.")
config = {}
except yaml.YAMLError as e: except yaml.YAMLError as e:
logger.error(f"Error parsing YAML configuration file: {e}. Exiting.") logger.error(f"Error parsing YAML configuration file: {e}. Using default empty config.")
config = {}
# Création du fournisseur de moteur NLP basé sur la configuration # Création du fournisseur de moteur NLP
logger.info("Creating NLP engine provider...") logger.info("Creating NLP engine provider...")
nlp_engine_provider = NlpEngineProvider(nlp_configuration=config.get("nlp_engine_configuration")) nlp_engine_provider = NlpEngineProvider(nlp_configuration=config.get("nlp_engine_configuration"))
nlp_engine = nlp_engine_provider.create_engine() nlp_engine = nlp_engine_provider.create_engine()
logger.info(f"NLP engine created with models for: {nlp_engine.get_supported_languages()}") logger.info(f"NLP engine created with models for: {nlp_engine.get_supported_languages()}")
# Création du registre de recognizers basé sur la configuration # Création du registre de recognizers
logger.info("Creating and populating recognizer registry...") logger.info("Creating and populating recognizer registry...")
registry = RecognizerRegistry() registry = RecognizerRegistry()
registry.load_predefined_recognizers(languages=config.get("supported_languages", ["en"])) registry.load_predefined_recognizers(languages=config.get("supported_languages", ["en"]))
@@ -41,34 +41,41 @@ registry.load_predefined_recognizers(languages=config.get("supported_languages",
# Ajout des recognizers personnalisés définis dans le YAML # Ajout des recognizers personnalisés définis dans le YAML
custom_recognizers_conf = config.get("recognizers", []) custom_recognizers_conf = config.get("recognizers", [])
for recognizer_conf in custom_recognizers_conf: for recognizer_conf in custom_recognizers_conf:
registry.add_pattern_recognizer( patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
# On crée une instance de PatternRecognizer
custom_recognizer = PatternRecognizer(
supported_entity=recognizer_conf['entity_name'],
name=recognizer_conf['name'], name=recognizer_conf['name'],
patterns=recognizer_conf['patterns'],
context=recognizer_conf.get('context'),
supported_language=recognizer_conf['supported_language'], supported_language=recognizer_conf['supported_language'],
supported_entity=recognizer_conf['entity_name'] patterns=patterns,
context=recognizer_conf.get('context')
) )
logger.info(f"Loaded custom recognizer: {recognizer_conf['name']}")
# --- CORRECTION DE LA LIGNE D'ERREUR ---
# La méthode correcte est 'add_recognizer', pas 'add_pattern_recognizer'
registry.add_recognizer(custom_recognizer)
logger.info(f"Loaded custom recognizer: {custom_recognizer.name}")
# --- FIN DU CHARGEMENT DE LA CONFIGURATION ---
# Ajout de l'allow_list (DenyListRecognizer)
allow_list_terms = [item['text'] for item in config.get("allow_list", []) if isinstance(item, dict) and 'text' in item]
if allow_list_terms:
deny_list_recognizer = DenyListRecognizer(supported_entity="GENERIC_PII", deny_list=allow_list_terms)
registry.add_recognizer(deny_list_recognizer)
logger.info(f"Loaded {len(allow_list_terms)} terms into the allow list (as a deny list recognizer).")
# Initialisation de l'application Flask # Initialisation de l'application Flask
app = Flask(__name__) app = Flask(__name__)
# Initialisation du moteur Presidio Analyzer avec les composants que nous avons créés # Initialisation du moteur Presidio Analyzer avec nos composants créés
logger.info("Initializing AnalyzerEngine with custom configuration...") logger.info("Initializing AnalyzerEngine with custom configuration...")
analyzer = AnalyzerEngine( analyzer = AnalyzerEngine(
nlp_engine=nlp_engine, nlp_engine=nlp_engine,
registry=registry, registry=registry,
supported_languages=config.get("supported_languages", ["en"]) supported_languages=config.get("supported_languages", ["en"]),
default_score_threshold=config.get("ner_model_configuration", {}).get("confidence_threshold", {}).get("default", 0.35)
) )
# On ajoute l'allow_list manuellement
allow_list = config.get("allow_list", [])
if allow_list:
registry.add_recognizer(DenyListRecognizer(supported_entity="GENERIC_PII", deny_list=allow_list))
logger.info(f"Loaded {len(allow_list)} terms into the allow list (deny list recognizer).")
logger.info("AnalyzerEngine initialized successfully.") logger.info("AnalyzerEngine initialized successfully.")
@app.route('/analyze', methods=['POST']) @app.route('/analyze', methods=['POST'])
@@ -81,16 +88,7 @@ def analyze_text():
if not text_to_analyze: if not text_to_analyze:
return jsonify({"error": "text field is missing or empty"}), 400 return jsonify({"error": "text field is missing or empty"}), 400
# Le seuil de confiance est appliqué ici, à la volée results = analyzer.analyze(text=text_to_analyze, language=language)
score_threshold = data.get("score_threshold", config.get("ner_model_configuration", {}).get("confidence_threshold", {}).get("default", 0.35))
results = analyzer.analyze(
text=text_to_analyze,
language=language,
score_threshold=score_threshold,
allow_list=allow_list # On passe la allow list ici aussi
)
response_data = [res.to_dict() for res in results] response_data = [res.to_dict() for res in results]
return make_response(jsonify(response_data), 200) return make_response(jsonify(response_data), 200)
except Exception as e: except Exception as e: