Update app.py

This commit is contained in:
Nacim
2025-06-23 16:16:53 +02:00
committed by GitHub
parent 3d7ec47ffd
commit 37f3b95298

60
app.py
View File

@@ -5,6 +5,11 @@ from flask import Flask, request, jsonify, make_response
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
from presidio_analyzer.nlp_engine import NlpEngineProvider
# On importe les recognizers prédéfinis qu'on veut pouvoir utiliser
from presidio_analyzer.predefined_recognizers import (
CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer,
MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer
)
# Configuration du logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
@@ -13,6 +18,19 @@ logger = logging.getLogger(__name__)
# Initialisation de l'application Flask
app = Flask(__name__)
# --- Dictionnaire pour mapper les noms du YAML aux classes Python ---
# C'est ce qui nous permet de lire la liste 'recognizer_registry' du YAML
PREDEFINED_RECOGNIZERS_MAP = {
"SpacyRecognizer": SpacyRecognizer,
"CreditCardRecognizer": CreditCardRecognizer,
"CryptoRecognizer": CryptoRecognizer,
"DateRecognizer": DateRecognizer,
"IpRecognizer": IpRecognizer,
"MedicalLicenseRecognizer": MedicalLicenseRecognizer,
"UrlRecognizer": UrlRecognizer,
}
# --- Initialisation Globale de l'Analyseur ---
analyzer = None
try:
@@ -25,20 +43,30 @@ try:
config = yaml.safe_load(f)
logger.info("Configuration file loaded successfully.")
# 2. Créer le fournisseur de moteur NLP avec TOUTE la configuration
# 2. Créer le fournisseur de moteur NLP
logger.info("Creating NLP engine provider...")
provider = NlpEngineProvider(nlp_configuration=config)
# 3. Créer le registre de recognizers
logger.info("Creating and populating recognizer registry...")
# 3. Créer le registre de recognizers EN SUIVANT LE YAML
logger.info("Creating and populating recognizer registry from config file...")
registry = RecognizerRegistry()
# On charge les recognizers par défaut pour les langues supportées
registry.load_predefined_recognizers(languages=config.get("supported_languages"))
# 4. Charger les recognizers personnalisés depuis la configuration
# === DÉBUT DE LA CORRECTION MAJEURE ===
# A) Charger les recognizers PRÉDÉFINIS listés dans le YAML
supported_languages = config.get("supported_languages", ["en"])
for recognizer_name in config.get("recognizer_registry", []):
if recognizer_name in PREDEFINED_RECOGNIZERS_MAP:
recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name]
# On passe les langues supportées à chaque recognizer qu'on instancie
registry.add_recognizer(recognizer_class(supported_languages=supported_languages))
logger.info(f"Loaded predefined recognizer: {recognizer_name}")
# B) Charger les recognizers PERSONNALISÉS définis dans le YAML
custom_recognizers_conf = config.get("recognizers", [])
for recognizer_conf in custom_recognizers_conf:
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
# On s'assure de ne pas recréer un recognizer prédéfini mais bien un custom
custom_recognizer = PatternRecognizer(
supported_entity=recognizer_conf['entity_name'],
name=recognizer_conf['name'],
@@ -47,20 +75,25 @@ try:
context=recognizer_conf.get('context')
)
registry.add_recognizer(custom_recognizer)
logger.info(f"Loaded custom recognizer: {custom_recognizer.name}")
logger.info(f"Loaded custom recognizer from YAML: {custom_recognizer.name}")
# 5. Créer l'AnalyzerEngine avec tous les composants
# === FIN DE LA CORRECTION MAJEURE ===
# 4. Créer l'AnalyzerEngine avec tous les composants
logger.info("Initializing AnalyzerEngine with custom components...")
analyzer = AnalyzerEngine(
nlp_engine=provider.create_engine(),
registry=registry,
supported_languages=config.get("supported_languages")
supported_languages=supported_languages
)
# L'allow list est chargée automatiquement par l'AnalyzerEngine
analyzer.set_allow_list(config.get("allow_list", []))
logger.info("--- Presidio Analyzer Service Ready ---")
except Exception as e:
logger.exception("FATAL: Error during AnalyzerEngine initialization.")
analyzer = None # S'assurer que l'analyzer est None en cas d'échec
analyzer = None
@app.route('/analyze', methods=['POST'])
def analyze_text():
@@ -70,13 +103,13 @@ def analyze_text():
try:
data = request.get_json(force=True)
text_to_analyze = data.get("text", "")
language = data.get("language", "fr") # Mettre 'fr' par défaut
# Utiliser la première langue supportée comme langue par défaut si non fournie
default_lang = analyzer.supported_languages[0] if analyzer.supported_languages else "en"
language = data.get("language", default_lang)
if not text_to_analyze:
return jsonify({"error": "text field is missing or empty"}), 400
# L'allow list est chargée directement depuis la configuration de l'Analyzer
# car c'est une fonctionnalité intégrée.
results = analyzer.analyze(
text=text_to_analyze,
language=language
@@ -86,7 +119,6 @@ def analyze_text():
return make_response(jsonify(response_data), 200)
except Exception as e:
logger.exception(f"Error during analysis request for language '{language}'.")
# Renvoyer l'erreur spécifique de Presidio si elle est informative
if "No matching recognizers" in str(e):
return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400
return jsonify({"error": str(e)}), 500