Update app.py
This commit is contained in:
62
app.py
62
app.py
@@ -5,6 +5,11 @@ from flask import Flask, request, jsonify, make_response
|
||||
|
||||
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
|
||||
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
||||
# On importe les recognizers prédéfinis qu'on veut pouvoir utiliser
|
||||
from presidio_analyzer.predefined_recognizers import (
|
||||
CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer,
|
||||
MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer
|
||||
)
|
||||
|
||||
# Configuration du logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
@@ -13,6 +18,19 @@ logger = logging.getLogger(__name__)
|
||||
# Initialisation de l'application Flask
|
||||
app = Flask(__name__)
|
||||
|
||||
# --- Dictionnaire pour mapper les noms du YAML aux classes Python ---
|
||||
# C'est ce qui nous permet de lire la liste 'recognizer_registry' du YAML
|
||||
PREDEFINED_RECOGNIZERS_MAP = {
|
||||
"SpacyRecognizer": SpacyRecognizer,
|
||||
"CreditCardRecognizer": CreditCardRecognizer,
|
||||
"CryptoRecognizer": CryptoRecognizer,
|
||||
"DateRecognizer": DateRecognizer,
|
||||
"IpRecognizer": IpRecognizer,
|
||||
"MedicalLicenseRecognizer": MedicalLicenseRecognizer,
|
||||
"UrlRecognizer": UrlRecognizer,
|
||||
}
|
||||
|
||||
|
||||
# --- Initialisation Globale de l'Analyseur ---
|
||||
analyzer = None
|
||||
try:
|
||||
@@ -25,20 +43,30 @@ try:
|
||||
config = yaml.safe_load(f)
|
||||
logger.info("Configuration file loaded successfully.")
|
||||
|
||||
# 2. Créer le fournisseur de moteur NLP avec TOUTE la configuration
|
||||
# 2. Créer le fournisseur de moteur NLP
|
||||
logger.info("Creating NLP engine provider...")
|
||||
provider = NlpEngineProvider(nlp_configuration=config)
|
||||
|
||||
# 3. Créer le registre de recognizers
|
||||
logger.info("Creating and populating recognizer registry...")
|
||||
# 3. Créer le registre de recognizers EN SUIVANT LE YAML
|
||||
logger.info("Creating and populating recognizer registry from config file...")
|
||||
registry = RecognizerRegistry()
|
||||
# On charge les recognizers par défaut pour les langues supportées
|
||||
registry.load_predefined_recognizers(languages=config.get("supported_languages"))
|
||||
|
||||
# 4. Charger les recognizers personnalisés depuis la configuration
|
||||
|
||||
# === DÉBUT DE LA CORRECTION MAJEURE ===
|
||||
|
||||
# A) Charger les recognizers PRÉDÉFINIS listés dans le YAML
|
||||
supported_languages = config.get("supported_languages", ["en"])
|
||||
for recognizer_name in config.get("recognizer_registry", []):
|
||||
if recognizer_name in PREDEFINED_RECOGNIZERS_MAP:
|
||||
recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name]
|
||||
# On passe les langues supportées à chaque recognizer qu'on instancie
|
||||
registry.add_recognizer(recognizer_class(supported_languages=supported_languages))
|
||||
logger.info(f"Loaded predefined recognizer: {recognizer_name}")
|
||||
|
||||
# B) Charger les recognizers PERSONNALISÉS définis dans le YAML
|
||||
custom_recognizers_conf = config.get("recognizers", [])
|
||||
for recognizer_conf in custom_recognizers_conf:
|
||||
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
|
||||
# On s'assure de ne pas recréer un recognizer prédéfini mais bien un custom
|
||||
custom_recognizer = PatternRecognizer(
|
||||
supported_entity=recognizer_conf['entity_name'],
|
||||
name=recognizer_conf['name'],
|
||||
@@ -47,20 +75,25 @@ try:
|
||||
context=recognizer_conf.get('context')
|
||||
)
|
||||
registry.add_recognizer(custom_recognizer)
|
||||
logger.info(f"Loaded custom recognizer: {custom_recognizer.name}")
|
||||
logger.info(f"Loaded custom recognizer from YAML: {custom_recognizer.name}")
|
||||
|
||||
# 5. Créer l'AnalyzerEngine avec tous les composants
|
||||
# === FIN DE LA CORRECTION MAJEURE ===
|
||||
|
||||
# 4. Créer l'AnalyzerEngine avec tous les composants
|
||||
logger.info("Initializing AnalyzerEngine with custom components...")
|
||||
analyzer = AnalyzerEngine(
|
||||
nlp_engine=provider.create_engine(),
|
||||
registry=registry,
|
||||
supported_languages=config.get("supported_languages")
|
||||
supported_languages=supported_languages
|
||||
)
|
||||
# L'allow list est chargée automatiquement par l'AnalyzerEngine
|
||||
analyzer.set_allow_list(config.get("allow_list", []))
|
||||
|
||||
logger.info("--- Presidio Analyzer Service Ready ---")
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("FATAL: Error during AnalyzerEngine initialization.")
|
||||
analyzer = None # S'assurer que l'analyzer est None en cas d'échec
|
||||
analyzer = None
|
||||
|
||||
@app.route('/analyze', methods=['POST'])
|
||||
def analyze_text():
|
||||
@@ -70,13 +103,13 @@ def analyze_text():
|
||||
try:
|
||||
data = request.get_json(force=True)
|
||||
text_to_analyze = data.get("text", "")
|
||||
language = data.get("language", "fr") # Mettre 'fr' par défaut
|
||||
# Utiliser la première langue supportée comme langue par défaut si non fournie
|
||||
default_lang = analyzer.supported_languages[0] if analyzer.supported_languages else "en"
|
||||
language = data.get("language", default_lang)
|
||||
|
||||
if not text_to_analyze:
|
||||
return jsonify({"error": "text field is missing or empty"}), 400
|
||||
|
||||
# L'allow list est chargée directement depuis la configuration de l'Analyzer
|
||||
# car c'est une fonctionnalité intégrée.
|
||||
results = analyzer.analyze(
|
||||
text=text_to_analyze,
|
||||
language=language
|
||||
@@ -86,7 +119,6 @@ def analyze_text():
|
||||
return make_response(jsonify(response_data), 200)
|
||||
except Exception as e:
|
||||
logger.exception(f"Error during analysis request for language '{language}'.")
|
||||
# Renvoyer l'erreur spécifique de Presidio si elle est informative
|
||||
if "No matching recognizers" in str(e):
|
||||
return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400
|
||||
return jsonify({"error": str(e)}), 500
|
||||
|
||||
Reference in New Issue
Block a user