Update app.py

This commit is contained in:
Nacim
2025-06-23 14:13:36 +02:00
committed by GitHub
parent 9ae76ba562
commit 5b797e64c3

97
app.py
View File

@@ -1,39 +1,78 @@
from flask import Flask, request, jsonify, make_response
from presidio_analyzer import AnalyzerEngine
import os
import logging
import yaml
from flask import Flask, request, jsonify, make_response
# Configuration du logging
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
from presidio_analyzer.nlp_engine import NlpEngineProvider
# Configuration du logging pour un meilleur débogage
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- CHARGEMENT MANUEL ET EXPLICITE DE LA CONFIGURATION ---
# Chemin vers le fichier de configuration, défini par la variable d'environnement
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
try:
with open(CONFIG_FILE_PATH, 'r') as f:
config = yaml.safe_load(f)
logger.info("Configuration file loaded successfully.")
except FileNotFoundError:
logger.error(f"Configuration file not found at {CONFIG_FILE_PATH}. Exiting.")
config = {}
except yaml.YAMLError as e:
logger.error(f"Error parsing YAML configuration file: {e}. Exiting.")
config = {}
# Création du fournisseur de moteur NLP basé sur la configuration
logger.info("Creating NLP engine provider...")
nlp_engine_provider = NlpEngineProvider(nlp_configuration=config.get("nlp_engine_configuration"))
nlp_engine = nlp_engine_provider.create_engine()
logger.info(f"NLP engine created with models for: {nlp_engine.get_supported_languages()}")
# Création du registre de recognizers basé sur la configuration
logger.info("Creating and populating recognizer registry...")
registry = RecognizerRegistry()
registry.load_predefined_recognizers(languages=config.get("supported_languages", ["en"]))
# Ajout des recognizers personnalisés définis dans le YAML
custom_recognizers_conf = config.get("recognizers", [])
for recognizer_conf in custom_recognizers_conf:
registry.add_pattern_recognizer(
name=recognizer_conf['name'],
patterns=recognizer_conf['patterns'],
context=recognizer_conf.get('context'),
supported_language=recognizer_conf['supported_language'],
supported_entity=recognizer_conf['entity_name']
)
logger.info(f"Loaded custom recognizer: {recognizer_conf['name']}")
# --- FIN DU CHARGEMENT DE LA CONFIGURATION ---
# Initialisation de l'application Flask
app = Flask(__name__)
# Initialisation du moteur Presidio Analyzer
analyzer = None
try:
logger.info("Initializing AnalyzerEngine...")
analyzer = AnalyzerEngine()
# Initialisation du moteur Presidio Analyzer avec les composants que nous avons créés
logger.info("Initializing AnalyzerEngine with custom configuration...")
analyzer = AnalyzerEngine(
nlp_engine=nlp_engine,
registry=registry,
supported_languages=config.get("supported_languages", ["en"])
)
# On ajoute l'allow_list manuellement
allow_list = config.get("allow_list", [])
if allow_list:
registry.add_recognizer(DenyListRecognizer(supported_entity="GENERIC_PII", deny_list=allow_list))
logger.info(f"Loaded {len(allow_list)} terms into the allow list (deny list recognizer).")
logger.info("AnalyzerEngine initialized successfully.")
# --- CORRECTION ICI ---
# La ligne de débogage est corrigée ou commentée.
# On va la commenter pour l'instant car elle n'est pas essentielle au fonctionnement.
# loaded_recognizers = [r.name for r in analyzer.registry.get_recognizers(language="fr")]
# logger.info(f"Loaded recognizers for 'fr': {loaded_recognizers}")
except Exception as e:
# La ligne 'analyzer = None' était déjà là, mais on s'assure qu'elle est bien là.
analyzer = None
logger.exception("FATAL: Error initializing AnalyzerEngine.")
@app.route('/analyze', methods=['POST'])
def analyze_text():
if not analyzer:
return jsonify({"error": "Analyzer engine not initialized"}), 500
try:
data = request.get_json(force=True)
text_to_analyze = data.get("text", "")
@@ -42,9 +81,17 @@ def analyze_text():
if not text_to_analyze:
return jsonify({"error": "text field is missing or empty"}), 400
results = analyzer.analyze(text=text_to_analyze, language=language)
response_data = [res.to_dict() for res in results]
# Le seuil de confiance est appliqué ici, à la volée
score_threshold = data.get("score_threshold", config.get("ner_model_configuration", {}).get("confidence_threshold", {}).get("default", 0.35))
results = analyzer.analyze(
text=text_to_analyze,
language=language,
score_threshold=score_threshold,
allow_list=allow_list # On passe la allow list ici aussi
)
response_data = [res.to_dict() for res in results]
return make_response(jsonify(response_data), 200)
except Exception as e:
logger.exception("Error during analysis.")