Actualiser app.py

This commit is contained in:
2025-08-03 20:05:01 +00:00
parent bfe7f7c31e
commit 7cf996e08b

110
app.py
View File

@@ -1,9 +1,14 @@
import os
import re
import logging
import yaml # ### AJOUT ### Nécessaire pour charger la configuration manuellement
from flask import Flask, request, jsonify, make_response
from presidio_analyzer import AnalyzerEngineProvider
# ### AJOUT ### Import des classes nécessaires pour l'anonymisation
from presidio_analyzer import AnalyzerEngine, RecognizerResult
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer.nlp_engine import NlpEngineProvider
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
@@ -11,28 +16,50 @@ logger = logging.getLogger(__name__)
app = Flask(__name__)
# Chargement du moteur Presidio via Provider
# --- Initialisation combinée de l'Analyzer et de l'Anonymizer ---
analyzer = None
try:
logger.info("--- Presidio Analyzer Service Starting ---")
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
provider = AnalyzerEngineProvider(analyzer_engine_conf_file=CONFIG_FILE_PATH)
analyzer = provider.create_engine()
logger.info(f"Analyzer ready. Languages: {analyzer.supported_languages}")
except Exception as e:
logger.exception("Error during AnalyzerEngine initialization.")
analyzer = None
anonymizer = None
# Regex strict pour IBAN belge format attendu
try:
logger.info("--- Presidio Service Starting ---")
# On récupère le chemin du fichier de configuration
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
if not os.path.exists(CONFIG_FILE_PATH):
raise FileNotFoundError(f"Configuration file not found at: {CONFIG_FILE_PATH}")
# On charge le fichier YAML en mémoire
with open(CONFIG_FILE_PATH, 'r') as f:
config = yaml.safe_load(f)
# 1. Créer l'Analyzer Engine en utilisant le provider et la configuration chargée
# Le provider sait comment lire la configuration pour l'analyzer
provider = AnalyzerEngineProvider(analyzer_engine_conf=config)
analyzer = provider.create_engine()
# 2. ### AJOUT ### Créer l'Anonymizer Engine en lui passant sa section de configuration
anonymizer_config = config.get("anonymizer_config", {})
anonymizer = AnonymizerEngine(anonymizer_config=anonymizer_config)
logger.info(f"Analyzer and Anonymizer are ready. Languages: {analyzer.supported_languages}")
except Exception as e:
logger.exception("FATAL: Error during Presidio engines initialization.")
analyzer = None
anonymizer = None
# --- Fin de la section d'initialisation ---
# Regex strict pour IBAN belge format attendu (INCHANGÉ)
IBAN_REGEX = re.compile(r"\b[A-Z]{2}[0-9]{2}(?:\s[0-9]{4}){3}\b", re.IGNORECASE)
# Regex IPv4
# Regex IPv4 (INCHANGÉ)
IPV4_REGEX = re.compile(
r"\b(?:(?:25[0-5]|2[0-4][0-9]|1\d{2}|[1-9]?\d)\.){3}"
r"(?:25[0-5]|2[0-4][0-9]|1\d{2}|[1-9]?\d)\b"
)
# Liste des labels/phrases à exclure danonymisation (en minuscules)
# Liste des labels/phrases à exclure danonymisation
IGNORE_LABELS = {
"témoins",
"témoins clés",
@@ -50,6 +77,9 @@ IGNORE_LABELS = {
def normalize_label(text: str) -> str:
return text.strip().lower()
# =========================
# ENDPOINT /analyze BASIQUE
# =========================
@app.route("/analyze", methods=["POST"])
def analyze_text():
if not analyzer:
@@ -81,36 +111,27 @@ def analyze_text():
true_iban = match.group(0)
start_offset = ent_text.find(true_iban)
if start_offset != -1:
old_start, old_end = res.start, res.end
res.start += start_offset
res.end = res.start + len(true_iban)
logger.debug(f"Adjusted IBAN span: {old_start}-{old_end} => {res.start}-{res.end}")
else:
logger.warning(f"IBAN regex match but cannot find substring position: '{ent_text}'")
else:
logger.warning(f"Invalid IBAN detected, skipping: '{ent_text}'")
continue
# Recadrage IP_ADDRESS strict IPv4 (wildcard possible pour IPv6 si besoin)
# Recadrage IP_ADDRESS strict IPv4
if res.entity_type == "IP_ADDRESS":
match = IPV4_REGEX.search(ent_text)
if match:
true_ip = match.group(0)
start_offset = ent_text.find(true_ip)
if start_offset != -1:
old_start, old_end = res.start, res.end
res.start += start_offset
res.end = res.start + len(true_ip)
logger.debug(f"Adjusted IP span: {old_start}-{old_end} => {res.start}-{res.end}")
else:
logger.warning(f"IP regex match but cannot find substring position: '{ent_text}'")
else:
logger.warning(f"Invalid IP detected, skipping: '{ent_text}'")
continue
filtered_results.append(res)
# Retourner le résultat nettoyé
response_data = [res.to_dict() for res in filtered_results]
return make_response(jsonify(response_data), 200)
@@ -118,5 +139,44 @@ def analyze_text():
logger.exception("Error processing analysis")
return jsonify({"error": str(e)}), 500
# ============================================
# ENDPOINT /anonymize QUI FAIT LE REMPLACEMENT
# ============================================
@app.route("/anonymize", methods=["POST"])
def anonymize_text():
if not analyzer or not anonymizer:
return jsonify({"error": "Presidio engines are not available. Check startup logs."}), 500
try:
data = request.get_json(force=True)
text_to_process = data.get("text", "")
language = data.get("language", "fr")
if not text_to_process:
return jsonify({"error": "text field is missing or empty"}), 400
# Étape 1 : Analyser le texte pour trouver les entités
analyzer_results = analyzer.analyze(text=text_to_process, language=language)
# Étape 2 : Anonymiser le texte en utilisant les résultats de l'analyse
# L'AnonymizerEngine va utiliser la config 'anonymizer_config' pour faire les remplacements
anonymized_result = anonymizer.anonymize(
text=text_to_process,
analyzer_results=analyzer_results
)
# Étape 3 : Renvoyer le texte anonymisé
return jsonify({"text": anonymized_result.text}), 200
except Exception as e:
logger.exception("Error processing anonymization request")
return jsonify({"error": str(e)}), 500
# =====================================================================
# DÉMARRAGE DE L'APPLICATION FLASK (INCHANGÉ)
# =====================================================================
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5001)
# Pour le déploiement, il est préférable d'utiliser un serveur WSGI comme Gunicorn
app.run(host="0.0.0.0", port=5001)