From 81bdc02722d1d0559a0a2f6cd67b53a38185461c Mon Sep 17 00:00:00 2001 From: Nacim Date: Mon, 23 Jun 2025 15:35:10 +0200 Subject: [PATCH] Update app.py --- app.py | 74 +++++++++++++++++++++++++++++++++++++++++++--------------- 1 file changed, 55 insertions(+), 19 deletions(-) diff --git a/app.py b/app.py index ad98aed..f0faeee 100644 --- a/app.py +++ b/app.py @@ -3,8 +3,8 @@ import logging import yaml from flask import Flask, request, jsonify, make_response -# Import des classes nécessaires de Presidio -from presidio_analyzer import AnalyzerEngine +from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern +from presidio_analyzer.nlp_engine import NlpEngineProvider # Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') @@ -13,36 +13,70 @@ logger = logging.getLogger(__name__) # Initialisation de l'application Flask app = Flask(__name__) -# --- LAISSER PRESIDIO GÉRER L'INITIALISATION --- -# L'AnalyzerEngine, lorsqu'il est initialisé sans arguments, va automatiquement : -# 1. Chercher la variable d'environnement PRESIDIO_ANALYZER_CONFIG_FILE. -# 2. Lire le fichier de configuration (votre default.yaml). -# 3. Créer et configurer tous les composants (moteur NLP, recognizers, etc.). - +# --- Initialisation Globale de l'Analyseur --- analyzer = None try: - logger.info("Initializing AnalyzerEngine using configuration from environment variable...") - analyzer = AnalyzerEngine() - logger.info("AnalyzerEngine initialized successfully.") + logger.info("--- Presidio Analyzer Service Starting ---") + + # 1. Charger la configuration depuis le fichier YAML + CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") + logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") + with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: + config = yaml.safe_load(f) + logger.info("Configuration file loaded successfully.") + + # 2. Créer le fournisseur de moteur NLP avec TOUTE la configuration + logger.info("Creating NLP engine provider...") + provider = NlpEngineProvider(nlp_configuration=config) + + # 3. Créer le registre de recognizers + logger.info("Creating and populating recognizer registry...") + registry = RecognizerRegistry() + # On charge les recognizers par défaut pour les langues supportées + registry.load_predefined_recognizers(languages=config.get("supported_languages")) + + # 4. Charger les recognizers personnalisés depuis la configuration + custom_recognizers_conf = config.get("recognizers", []) + for recognizer_conf in custom_recognizers_conf: + patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] + custom_recognizer = PatternRecognizer( + supported_entity=recognizer_conf['entity_name'], + name=recognizer_conf['name'], + supported_language=recognizer_conf['supported_language'], + patterns=patterns, + context=recognizer_conf.get('context') + ) + registry.add_recognizer(custom_recognizer) + logger.info(f"Loaded custom recognizer: {custom_recognizer.name}") + + # 5. Créer l'AnalyzerEngine avec tous les composants + logger.info("Initializing AnalyzerEngine with custom components...") + analyzer = AnalyzerEngine( + nlp_engine=provider.create_engine(), + registry=registry, + supported_languages=config.get("supported_languages") + ) + logger.info("--- Presidio Analyzer Service Ready ---") + except Exception as e: - logger.exception("FATAL: Error initializing AnalyzerEngine from configuration.") - # On s'assure que l'analyzer est None pour que les requêtes échouent proprement - analyzer = None + logger.exception("FATAL: Error during AnalyzerEngine initialization.") + analyzer = None # S'assurer que l'analyzer est None en cas d'échec @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: - return jsonify({"error": "Analyzer engine not initialized. Check startup logs."}), 500 + return jsonify({"error": "Analyzer engine is not available. Check startup logs for errors."}), 500 try: data = request.get_json(force=True) text_to_analyze = data.get("text", "") - language = data.get("language", "en") + language = data.get("language", "fr") # Mettre 'fr' par défaut if not text_to_analyze: return jsonify({"error": "text field is missing or empty"}), 400 - # L'allow list est chargée par l'AnalyzerEngine depuis le default.yaml + # L'allow list est chargée directement depuis la configuration de l'Analyzer + # car c'est une fonctionnalité intégrée. results = analyzer.analyze( text=text_to_analyze, language=language @@ -51,9 +85,11 @@ def analyze_text(): response_data = [res.to_dict() for res in results] return make_response(jsonify(response_data), 200) except Exception as e: - logger.exception("Error during analysis request.") + logger.exception(f"Error during analysis request for language '{language}'.") + # Renvoyer l'erreur spécifique de Presidio si elle est informative + if "No matching recognizers" in str(e): + return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400 return jsonify({"error": str(e)}), 500 if __name__ == '__main__': - # Pour un test local sans gunicorn app.run(host='0.0.0.0', port=5001)