diff --git a/app.py b/app.py index e7db379..623a0dd 100644 --- a/app.py +++ b/app.py @@ -1,11 +1,9 @@ import os import logging -import yaml from flask import Flask, request, jsonify, make_response -from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern -from presidio_analyzer.nlp_engine import NlpEngineProvider -from presidio_analyzer.predefined_recognizers import SpacyRecognizer +# On importe UNIQUEMENT le Provider, c'est lui qui gère tout. +from presidio_analyzer import AnalyzerEngineProvider # Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') @@ -14,60 +12,27 @@ logger = logging.getLogger(__name__) # Initialisation de l'application Flask app = Flask(__name__) -# --- Initialisation Globale de l'Analyseur --- +# --- Initialisation Globale de l'Analyseur via le Provider --- analyzer = None try: logger.info("--- Presidio Analyzer Service Starting ---") - # 1. Charger la configuration + # Le chemin vers le fichier de configuration est toujours défini par la variable d'environnement CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") - logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") - with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: - config = yaml.safe_load(f) - logger.info("Configuration file loaded successfully.") - - # 2. Créer le fournisseur de moteur NLP - logger.info("Creating NLP engine provider...") - provider = NlpEngineProvider(nlp_configuration=config) - # 3. Créer le registre. Il contient déjà les détecteurs anglais par défaut. - logger.info("Creating RecognizerRegistry (with default EN recognizers)...") - registry = RecognizerRegistry() - logger.info(f"Initial registry state supports: {registry.supported_languages}") + # On utilise le Provider pour lire le fichier et créer le moteur + # C'est la méthode officielle et robuste. + provider = AnalyzerEngineProvider(analyzer_engine_conf_file=CONFIG_FILE_PATH) + analyzer = provider.create_engine() - # 4. AJOUTER les détecteurs français à ce registre existant - logger.info("Adding French recognizers to the existing registry...") - - # Ajouter le support des entités de base (PERSON, LOC) pour le français - registry.add_recognizer(SpacyRecognizer(supported_language="fr")) - logger.info("Added SpacyRecognizer for 'fr'.") - - # Ajouter tous vos détecteurs personnalisés (qui sont pour 'fr') - for recognizer_conf in config.get("recognizers", []): - patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] - registry.add_recognizer(PatternRecognizer( - supported_entity=recognizer_conf['entity_name'], - name=recognizer_conf['name'], - supported_language=recognizer_conf['supported_language'], - patterns=patterns, - context=recognizer_conf.get('context') - )) - logger.info(f"Added custom recognizer '{recognizer_conf['name']}' for language 'fr'") - - logger.info(f"Final registry state. Should now support: {registry.supported_languages}") - - # 5. Créer l'AnalyzerEngine - logger.info("Initializing AnalyzerEngine...") - analyzer = AnalyzerEngine( - nlp_engine=provider.create_engine(), - registry=registry, - supported_languages=config.get("supported_languages") - ) - - analyzer.set_allow_list(config.get("allow_list", [])) + # L'allow_list est aussi gérée par le provider, mais on peut la surcharger si besoin + # from presidio_analyzer.store import AllowListStore + # allow_list_store = AllowListStore() + # allow_list_store.set_allow_list(provider.get_configuration().get("allow_list", [])) + # analyzer.allow_list_store = allow_list_store logger.info("--- Presidio Analyzer Service Ready ---") - logger.info(f"SUCCESS: Final analyzer languages are: {analyzer.supported_languages}") + logger.info(f"Analyzer created successfully, supporting languages: {analyzer.supported_languages}") except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") @@ -76,16 +41,29 @@ except Exception as e: # Le reste du fichier Flask est identique @app.route('/analyze', methods=['POST']) def analyze_text(): - if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500 + if not analyzer: + return jsonify({"error": "Analyzer engine is not available. Check startup logs."}), 500 + try: data = request.get_json(force=True) - text = data.get("text", "") - lang = data.get("language", "fr") - if not text: return jsonify({"error": "text field is missing"}), 400 - results = analyzer.analyze(text=text, language=lang) - return make_response(jsonify([res.to_dict() for res in results]), 200) + text_to_analyze = data.get("text", "") + language = data.get("language", "fr") + + if not text_to_analyze: + return jsonify({"error": "text field is missing or empty"}), 400 + + results = analyzer.analyze( + text=text_to_analyze, + language=language + ) + + response_data = [res.to_dict() for res in results] + return make_response(jsonify(response_data), 200) + except Exception as e: - logger.exception("Error during analysis request.") + logger.exception(f"Error during analysis for language '{language}'.") + if "No matching recognizers" in str(e): + return jsonify({"error": f"No recognizers available for language '{language}'."}), 400 return jsonify({"error": str(e)}), 500 if __name__ == '__main__':