import os import logging import yaml from flask import Flask, request, jsonify, make_response from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider from presidio_analyzer.predefined_recognizers import ( CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer, MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer ) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) app = Flask(__name__) PREDEFINED_RECOGNIZERS_MAP = { "SpacyRecognizer": SpacyRecognizer, "CreditCardRecognizer": CreditCardRecognizer, "CryptoRecognizer": CryptoRecognizer, "DateRecognizer": DateRecognizer, "IpRecognizer": IpRecognizer, "MedicalLicenseRecognizer": MedicalLicenseRecognizer, "UrlRecognizer": UrlRecognizer, } analyzer = None try: logger.info("--- Presidio Analyzer Service Starting ---") CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") logger.info("Creating NLP engine provider...") provider = NlpEngineProvider(nlp_configuration=config) logger.info("Creating and populating recognizer registry from config file...") registry = RecognizerRegistry() supported_languages = config.get("supported_languages", ["en"]) # Étape A: Construire les détecteurs personnalisés custom_recognizers = {} for recognizer_conf in config.get("recognizers", []): patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] custom_recognizers[recognizer_conf['name']] = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], supported_language=recognizer_conf['supported_language'], patterns=patterns, context=recognizer_conf.get('context') ) # Étape B: Activer les détecteurs listés dans recognizer_registry for recognizer_name in config.get("recognizer_registry", []): if recognizer_name in custom_recognizers: registry.add_recognizer(custom_recognizers[recognizer_name]) logger.info(f"Loaded CUSTOM recognizer from list: {recognizer_name}") elif recognizer_name in PREDEFINED_RECOGNIZERS_MAP: recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name] for lang in supported_languages: instance = recognizer_class(supported_language=lang) registry.add_recognizer(instance) logger.info(f"Loaded PREDEFINED recognizer '{recognizer_name}' for languages: {supported_languages}") else: logger.warning(f"Recognizer '{recognizer_name}' from registry list was not found.") # === DÉBUT DU BLOC DE DIAGNOSTIC === logger.info("=================================================================") logger.info("DIAGNOSTIC: FINAL REGISTRY STATE BEFORE ANALYZER ENGINE CREATION") logger.info(f"Expected languages: {supported_languages}") # On demande au registre lui-même quelles langues il pense supporter actual_registry_langs = registry.supported_languages logger.info(f"Actual languages reported by registry.supported_languages: {actual_registry_langs}") logger.info("--- Detailed Recognizer List ---") if not registry.recognizers: logger.info("Registry is empty.") for i, rec in enumerate(registry.recognizers): logger.info(f" {i+1}: Recognizer='{rec.name}', Supported Languages={rec.supported_languages}, Entities={rec.supported_entities}") logger.info("=================================================================") # === FIN DU BLOC DE DIAGNOSTIC === logger.info("Initializing AnalyzerEngine with custom components...") analyzer = AnalyzerEngine( nlp_engine=provider.create_engine(), registry=registry, supported_languages=supported_languages ) analyzer.set_allow_list(config.get("allow_list", [])) logger.info("--- Presidio Analyzer Service Ready ---") except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") analyzer = None # Le reste du fichier Flask est identique @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500 try: data = request.get_json(force=True) text = data.get("text", "") lang = data.get("language", "fr") if not text: return jsonify({"error": "text field is missing"}), 400 results = analyzer.analyze(text=text, language=lang) return make_response(jsonify([res.to_dict() for res in results]), 200) except Exception as e: logger.exception("Error during analysis request.") return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)