import os import logging import yaml from flask import Flask, request, jsonify, make_response # Import des classes nécessaires de Presidio from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider # Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # --- CHARGEMENT MANUEL ET EXPLICITE DE LA CONFIGURATION --- CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") config = {} try: with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") except Exception as e: logger.exception(f"Could not load or parse configuration file at {CONFIG_FILE_PATH}") # En cas d'échec, on continue avec une config vide pour ne pas planter, mais le service sera limité. config = {} # On récupère les langues supportées depuis la config pour les utiliser partout supported_languages_from_config = config.get("supported_languages", ["en"]) logger.info(f"Languages supported according to config: {supported_languages_from_config}") # Création du fournisseur de moteur NLP logger.info("Creating NLP engine provider...") nlp_engine_provider = NlpEngineProvider(nlp_configuration=config.get("nlp_engine_configuration")) nlp_engine = nlp_engine_provider.create_engine() logger.info(f"NLP engine created with models for: {nlp_engine.get_supported_languages()}") # Création du registre de recognizers logger.info("Creating and populating recognizer registry...") registry = RecognizerRegistry() # On initialise le registre avec TOUTES les langues supportées registry.load_predefined_recognizers(languages=supported_languages_from_config) # Ajout des recognizers personnalisés définis dans le YAML custom_recognizers_conf = config.get("recognizers", []) for recognizer_conf in custom_recognizers_conf: patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] custom_recognizer = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], supported_language=recognizer_conf['supported_language'], patterns=patterns, context=recognizer_conf.get('context') ) registry.add_recognizer(custom_recognizer) logger.info(f"Loaded custom recognizer: {custom_recognizer.name}") # Préparation de l'allow_list (simple liste de mots) allow_list_config = config.get("allow_list", []) allow_list_terms = [item if isinstance(item, str) else item.get('text') for item in allow_list_config if item] if allow_list_terms: logger.info(f"Prepared {len(allow_list_terms)} terms for the allow list.") # Initialisation de l'application Flask app = Flask(__name__) # Initialisation du moteur Presidio Analyzer logger.info("Initializing AnalyzerEngine with custom configuration...") analyzer = AnalyzerEngine( nlp_engine=nlp_engine, registry=registry, supported_languages=supported_languages_from_config, # On s'assure de la cohérence ici aussi default_score_threshold=config.get("ner_model_configuration", {}).get("confidence_threshold", {}).get("default", 0.35) ) logger.info("AnalyzerEngine initialized successfully.") @app.route('/analyze', methods=['POST']) def analyze_text(): try: data = request.get_json(force=True) text_to_analyze = data.get("text", "") language = data.get("language", "en") if not text_to_analyze: return jsonify({"error": "text field is missing or empty"}), 400 # On passe directement la liste de mots à ignorer au paramètre 'allow_list' results = analyzer.analyze( text=text_to_analyze, language=language, allow_list=allow_list_terms ) response_data = [res.to_dict() for res in results] return make_response(jsonify(response_data), 200) except Exception as e: logger.exception("Error during analysis.") return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)