import os import logging import yaml from flask import Flask, request, jsonify, make_response from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider # On importe les classes des détecteurs prédéfinis que l'on veut pouvoir utiliser depuis le YAML from presidio_analyzer.predefined_recognizers import ( CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer, MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer ) # Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Initialisation de l'application Flask app = Flask(__name__) # --- Dictionnaire pour mapper les noms du YAML aux classes Python --- PREDEFINED_RECOGNIZERS_MAP = { "SpacyRecognizer": SpacyRecognizer, "CreditCardRecognizer": CreditCardRecognizer, "CryptoRecognizer": CryptoRecognizer, "DateRecognizer": DateRecognizer, "IpRecognizer": IpRecognizer, "MedicalLicenseRecognizer": MedicalLicenseRecognizer, "UrlRecognizer": UrlRecognizer, } # --- Initialisation Globale de l'Analyseur --- analyzer = None try: logger.info("--- Presidio Analyzer Service Starting ---") # 1. Charger la configuration depuis le fichier YAML CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") # 2. Créer le fournisseur de moteur NLP logger.info("Creating NLP engine provider...") provider = NlpEngineProvider(nlp_configuration=config) # 3. Créer le registre de recognizers EN SUIVANT LE YAML logger.info("Creating and populating recognizer registry from config file...") registry = RecognizerRegistry() supported_languages = config.get("supported_languages", ["en"]) # === DÉBUT DE LA CORRECTION MAJEURE === # Étape A: On pré-construit tous les détecteurs personnalisés ("custom") définis dans la section 'recognizers' custom_recognizers = {} for recognizer_conf in config.get("recognizers", []): patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] custom_recognizer = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], supported_language=recognizer_conf['supported_language'], patterns=patterns, context=recognizer_conf.get('context') ) custom_recognizers[recognizer_conf['name']] = custom_recognizer # Étape B: On parcourt la liste 'recognizer_registry' pour activer les détecteurs demandés for recognizer_name in config.get("recognizer_registry", []): # Cas 1: Le détecteur est dans notre liste de détecteurs personnalisés if recognizer_name in custom_recognizers: registry.add_recognizer(custom_recognizers[recognizer_name]) logger.info(f"Loaded custom recognizer from registry list: {recognizer_name}") # Cas 2: Le détecteur est un détecteur prédéfini connu elif recognizer_name in PREDEFINED_RECOGNIZERS_MAP: recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name] # On crée une instance pour chaque langue supportée (en, fr) for lang in supported_languages: # CORRECTION : On utilise le mot-clé au singulier 'supported_language' instance = recognizer_class(supported_language=lang) registry.add_recognizer(instance) logger.info(f"Loaded predefined recognizer '{recognizer_name}' for languages: {supported_languages}") else: logger.warning(f"Recognizer '{recognizer_name}' from registry list was not found in custom or predefined lists.") # === FIN DE LA CORRECTION MAJEURE === # 4. Créer l'AnalyzerEngine avec tous les composants logger.info("Initializing AnalyzerEngine with custom components...") analyzer = AnalyzerEngine( nlp_engine=provider.create_engine(), registry=registry, supported_languages=supported_languages ) analyzer.set_allow_list(config.get("allow_list", [])) logger.info("--- Presidio Analyzer Service Ready ---") except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") analyzer = None # Le reste du fichier Flask reste identique... @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: return jsonify({"error": "Analyzer engine is not available. Check startup logs for errors."}), 500 try: data = request.get_json(force=True) text_to_analyze = data.get("text", "") default_lang = analyzer.supported_languages[0] if analyzer.supported_languages else "en" language = data.get("language", default_lang) if not text_to_analyze: return jsonify({"error": "text field is missing or empty"}), 400 results = analyzer.analyze(text=text_to_analyze, language=language) response_data = [res.to_dict() for res in results] return make_response(jsonify(response_data), 200) except Exception as e: logger.exception(f"Error during analysis request for language '{language}'.") if "No matching recognizers" in str(e): return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400 return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)