import os import logging import yaml from flask import Flask, request, jsonify, make_response from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider from presidio_analyzer.predefined_recognizers import SpacyRecognizer # Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Initialisation de l'application Flask app = Flask(__name__) # --- Initialisation Globale de l'Analyseur --- analyzer = None try: logger.info("--- Presidio Analyzer Service Starting ---") # 1. Charger la configuration depuis le fichier YAML CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") # 2. Créer le fournisseur de moteur NLP logger.info("Creating NLP engine provider...") provider = NlpEngineProvider(nlp_configuration=config) # 3. Créer un registre de recognizers VIDE logger.info("Creating a clean RecognizerRegistry...") registry = RecognizerRegistry() # 4. Charger les recognizers personnalisés (définis sous la clé 'recognizers') logger.info("Loading custom recognizers from YAML...") custom_recognizers_conf = config.get("recognizers", []) for recognizer_conf in custom_recognizers_conf: patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] custom_recognizer = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], supported_language=recognizer_conf['supported_language'], patterns=patterns, context=recognizer_conf.get('context') ) # On ajoute UNIQUEMENT les détecteurs customs définis pour le français if recognizer_conf['supported_language'] == 'fr': registry.add_recognizer(custom_recognizer) logger.info(f"Loaded and registered custom recognizer: {custom_recognizer.name}") # 5. Ajouter le SpacyRecognizer, qui est un cas spécial pour les entités de base registry.add_recognizer(SpacyRecognizer(supported_language="en")) registry.add_recognizer(SpacyRecognizer(supported_language="fr")) logger.info("Registered SpacyRecognizer for 'en' and 'fr'.") # 6. Créer l'AnalyzerEngine logger.info("Initializing AnalyzerEngine with custom components...") analyzer = AnalyzerEngine( nlp_engine=provider.create_engine(), registry=registry, supported_languages=config.get("supported_languages", ["en", "fr"]) ) analyzer.set_allow_list(config.get("allow_list", [])) logger.info("--- Presidio Analyzer Service Ready ---") logger.info(f"Final supported languages in registry: {registry.supported_languages}") except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") analyzer = None # Le reste du fichier Flask reste identique... @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500 try: data = request.get_json(force=True) text = data.get("text", "") lang = data.get("language", "fr") if not text: return jsonify({"error": "text field is missing"}), 400 results = analyzer.analyze(text=text, language=lang) return make_response(jsonify([res.to_dict() for res in results]), 200) except Exception as e: logger.exception("Error during analysis request.") return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)