import os import logging import yaml from flask import Flask, request, jsonify, make_response from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider # On importe les recognizers prédéfinis qu'on veut pouvoir utiliser from presidio_analyzer.predefined_recognizers import ( CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer, MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer ) # Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Initialisation de l'application Flask app = Flask(__name__) # --- Dictionnaire pour mapper les noms du YAML aux classes Python --- # C'est ce qui nous permet de lire la liste 'recognizer_registry' du YAML PREDEFINED_RECOGNIZERS_MAP = { "SpacyRecognizer": SpacyRecognizer, "CreditCardRecognizer": CreditCardRecognizer, "CryptoRecognizer": CryptoRecognizer, "DateRecognizer": DateRecognizer, "IpRecognizer": IpRecognizer, "MedicalLicenseRecognizer": MedicalLicenseRecognizer, "UrlRecognizer": UrlRecognizer, } # --- Initialisation Globale de l'Analyseur --- analyzer = None try: logger.info("--- Presidio Analyzer Service Starting ---") # 1. Charger la configuration depuis le fichier YAML CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") # 2. Créer le fournisseur de moteur NLP logger.info("Creating NLP engine provider...") provider = NlpEngineProvider(nlp_configuration=config) # 3. Créer le registre de recognizers EN SUIVANT LE YAML logger.info("Creating and populating recognizer registry from config file...") registry = RecognizerRegistry() # === DÉBUT DE LA CORRECTION MAJEURE === # A) Charger les recognizers PRÉDÉFINIS listés dans le YAML supported_languages = config.get("supported_languages", ["en"]) for recognizer_name in config.get("recognizer_registry", []): if recognizer_name in PREDEFINED_RECOGNIZERS_MAP: recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name] # On passe les langues supportées à chaque recognizer qu'on instancie registry.add_recognizer(recognizer_class(supported_languages=supported_languages)) logger.info(f"Loaded predefined recognizer: {recognizer_name}") # B) Charger les recognizers PERSONNALISÉS définis dans le YAML custom_recognizers_conf = config.get("recognizers", []) for recognizer_conf in custom_recognizers_conf: patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] # On s'assure de ne pas recréer un recognizer prédéfini mais bien un custom custom_recognizer = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], supported_language=recognizer_conf['supported_language'], patterns=patterns, context=recognizer_conf.get('context') ) registry.add_recognizer(custom_recognizer) logger.info(f"Loaded custom recognizer from YAML: {custom_recognizer.name}") # === FIN DE LA CORRECTION MAJEURE === # 4. Créer l'AnalyzerEngine avec tous les composants logger.info("Initializing AnalyzerEngine with custom components...") analyzer = AnalyzerEngine( nlp_engine=provider.create_engine(), registry=registry, supported_languages=supported_languages ) # L'allow list est chargée automatiquement par l'AnalyzerEngine analyzer.set_allow_list(config.get("allow_list", [])) logger.info("--- Presidio Analyzer Service Ready ---") except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") analyzer = None @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: return jsonify({"error": "Analyzer engine is not available. Check startup logs for errors."}), 500 try: data = request.get_json(force=True) text_to_analyze = data.get("text", "") # Utiliser la première langue supportée comme langue par défaut si non fournie default_lang = analyzer.supported_languages[0] if analyzer.supported_languages else "en" language = data.get("language", default_lang) if not text_to_analyze: return jsonify({"error": "text field is missing or empty"}), 400 results = analyzer.analyze( text=text_to_analyze, language=language ) response_data = [res.to_dict() for res in results] return make_response(jsonify(response_data), 200) except Exception as e: logger.exception(f"Error during analysis request for language '{language}'.") if "No matching recognizers" in str(e): return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400 return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)