import os import logging import yaml from flask import Flask, request, jsonify, make_response from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider from presidio_analyzer.predefined_recognizers import SpacyRecognizer # Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Initialisation de l'application Flask app = Flask(__name__) # --- Initialisation Globale de l'Analyseur --- analyzer = None try: logger.info("--- Presidio Analyzer Service Starting ---") # 1. Charger la configuration CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") # 2. Créer le fournisseur de moteur NLP logger.info("Creating NLP engine provider...") provider = NlpEngineProvider(nlp_configuration=config) # 3. Créer le registre. Il contient déjà les détecteurs anglais par défaut. logger.info("Creating RecognizerRegistry (with default EN recognizers)...") registry = RecognizerRegistry() logger.info(f"Initial registry state supports: {registry.supported_languages}") # 4. AJOUTER les détecteurs français à ce registre existant logger.info("Adding French recognizers to the existing registry...") # Ajouter le support des entités de base (PERSON, LOC) pour le français registry.add_recognizer(SpacyRecognizer(supported_language="fr")) logger.info("Added SpacyRecognizer for 'fr'.") # Ajouter tous vos détecteurs personnalisés (qui sont pour 'fr') for recognizer_conf in config.get("recognizers", []): patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] registry.add_recognizer(PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], supported_language=recognizer_conf['supported_language'], patterns=patterns, context=recognizer_conf.get('context') )) logger.info(f"Added custom recognizer '{recognizer_conf['name']}' for language 'fr'") logger.info(f"Final registry state. Should now support: {registry.supported_languages}") # 5. Créer l'AnalyzerEngine logger.info("Initializing AnalyzerEngine...") analyzer = AnalyzerEngine( nlp_engine=provider.create_engine(), registry=registry, supported_languages=config.get("supported_languages") ) analyzer.set_allow_list(config.get("allow_list", [])) logger.info("--- Presidio Analyzer Service Ready ---") logger.info(f"SUCCESS: Final analyzer languages are: {analyzer.supported_languages}") except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") analyzer = None # Le reste du fichier Flask est identique @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500 try: data = request.get_json(force=True) text = data.get("text", "") lang = data.get("language", "fr") if not text: return jsonify({"error": "text field is missing"}), 400 results = analyzer.analyze(text=text, language=lang) return make_response(jsonify([res.to_dict() for res in results]), 200) except Exception as e: logger.exception("Error during analysis request.") return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)