import os import logging import yaml from flask import Flask, request, jsonify, make_response from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer.nlp_engine import NlpEngineProvider # Configuration du logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Initialisation de l'application Flask app = Flask(__name__) # --- Initialisation Globale de l'Analyseur --- analyzer = None try: logger.info("--- Presidio Analyzer Service Starting ---") # 1. Charger la configuration depuis le fichier YAML CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: config = yaml.safe_load(f) logger.info("Configuration file loaded successfully.") # 2. Créer le fournisseur de moteur NLP avec TOUTE la configuration logger.info("Creating NLP engine provider...") provider = NlpEngineProvider(nlp_configuration=config) # 3. Créer le registre de recognizers logger.info("Creating and populating recognizer registry...") registry = RecognizerRegistry() # On charge les recognizers par défaut pour les langues supportées registry.load_predefined_recognizers(languages=config.get("supported_languages")) # 4. Charger les recognizers personnalisés depuis la configuration custom_recognizers_conf = config.get("recognizers", []) for recognizer_conf in custom_recognizers_conf: patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] custom_recognizer = PatternRecognizer( supported_entity=recognizer_conf['entity_name'], name=recognizer_conf['name'], supported_language=recognizer_conf['supported_language'], patterns=patterns, context=recognizer_conf.get('context') ) registry.add_recognizer(custom_recognizer) logger.info(f"Loaded custom recognizer: {custom_recognizer.name}") # 5. Créer l'AnalyzerEngine avec tous les composants logger.info("Initializing AnalyzerEngine with custom components...") analyzer = AnalyzerEngine( nlp_engine=provider.create_engine(), registry=registry, supported_languages=config.get("supported_languages") ) logger.info("--- Presidio Analyzer Service Ready ---") except Exception as e: logger.exception("FATAL: Error during AnalyzerEngine initialization.") analyzer = None # S'assurer que l'analyzer est None en cas d'échec @app.route('/analyze', methods=['POST']) def analyze_text(): if not analyzer: return jsonify({"error": "Analyzer engine is not available. Check startup logs for errors."}), 500 try: data = request.get_json(force=True) text_to_analyze = data.get("text", "") language = data.get("language", "fr") # Mettre 'fr' par défaut if not text_to_analyze: return jsonify({"error": "text field is missing or empty"}), 400 # L'allow list est chargée directement depuis la configuration de l'Analyzer # car c'est une fonctionnalité intégrée. results = analyzer.analyze( text=text_to_analyze, language=language ) response_data = [res.to_dict() for res in results] return make_response(jsonify(response_data), 200) except Exception as e: logger.exception(f"Error during analysis request for language '{language}'.") # Renvoyer l'erreur spécifique de Presidio si elle est informative if "No matching recognizers" in str(e): return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400 return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5001)