96 lines
4.0 KiB
Python
96 lines
4.0 KiB
Python
import os
|
|
import logging
|
|
import yaml
|
|
from flask import Flask, request, jsonify, make_response
|
|
|
|
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
|
|
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
|
|
|
# Configuration du logging
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Initialisation de l'application Flask
|
|
app = Flask(__name__)
|
|
|
|
# --- Initialisation Globale de l'Analyseur ---
|
|
analyzer = None
|
|
try:
|
|
logger.info("--- Presidio Analyzer Service Starting ---")
|
|
|
|
# 1. Charger la configuration depuis le fichier YAML
|
|
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
|
|
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
|
|
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
|
|
config = yaml.safe_load(f)
|
|
logger.info("Configuration file loaded successfully.")
|
|
|
|
# 2. Créer le fournisseur de moteur NLP avec TOUTE la configuration
|
|
logger.info("Creating NLP engine provider...")
|
|
provider = NlpEngineProvider(nlp_configuration=config)
|
|
|
|
# 3. Créer le registre de recognizers
|
|
logger.info("Creating and populating recognizer registry...")
|
|
registry = RecognizerRegistry()
|
|
# On charge les recognizers par défaut pour les langues supportées
|
|
registry.load_predefined_recognizers(languages=config.get("supported_languages"))
|
|
|
|
# 4. Charger les recognizers personnalisés depuis la configuration
|
|
custom_recognizers_conf = config.get("recognizers", [])
|
|
for recognizer_conf in custom_recognizers_conf:
|
|
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
|
|
custom_recognizer = PatternRecognizer(
|
|
supported_entity=recognizer_conf['entity_name'],
|
|
name=recognizer_conf['name'],
|
|
supported_language=recognizer_conf['supported_language'],
|
|
patterns=patterns,
|
|
context=recognizer_conf.get('context')
|
|
)
|
|
registry.add_recognizer(custom_recognizer)
|
|
logger.info(f"Loaded custom recognizer: {custom_recognizer.name}")
|
|
|
|
# 5. Créer l'AnalyzerEngine avec tous les composants
|
|
logger.info("Initializing AnalyzerEngine with custom components...")
|
|
analyzer = AnalyzerEngine(
|
|
nlp_engine=provider.create_engine(),
|
|
registry=registry,
|
|
supported_languages=config.get("supported_languages")
|
|
)
|
|
logger.info("--- Presidio Analyzer Service Ready ---")
|
|
|
|
except Exception as e:
|
|
logger.exception("FATAL: Error during AnalyzerEngine initialization.")
|
|
analyzer = None # S'assurer que l'analyzer est None en cas d'échec
|
|
|
|
@app.route('/analyze', methods=['POST'])
|
|
def analyze_text():
|
|
if not analyzer:
|
|
return jsonify({"error": "Analyzer engine is not available. Check startup logs for errors."}), 500
|
|
|
|
try:
|
|
data = request.get_json(force=True)
|
|
text_to_analyze = data.get("text", "")
|
|
language = data.get("language", "fr") # Mettre 'fr' par défaut
|
|
|
|
if not text_to_analyze:
|
|
return jsonify({"error": "text field is missing or empty"}), 400
|
|
|
|
# L'allow list est chargée directement depuis la configuration de l'Analyzer
|
|
# car c'est une fonctionnalité intégrée.
|
|
results = analyzer.analyze(
|
|
text=text_to_analyze,
|
|
language=language
|
|
)
|
|
|
|
response_data = [res.to_dict() for res in results]
|
|
return make_response(jsonify(response_data), 200)
|
|
except Exception as e:
|
|
logger.exception(f"Error during analysis request for language '{language}'.")
|
|
# Renvoyer l'erreur spécifique de Presidio si elle est informative
|
|
if "No matching recognizers" in str(e):
|
|
return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
if __name__ == '__main__':
|
|
app.run(host='0.0.0.0', port=5001)
|