Files
Presidio/app.py
2025-09-15 19:04:38 +02:00

383 lines
14 KiB
Python

import os
import logging
import re
import yaml
from flask import Flask, request, jsonify, make_response
from presidio_analyzer import AnalyzerEngineProvider
from config_loader import ConfigLoader
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig
from entity_refiners import EntityRefinerManager
from pipeline_manager import AnalysisPipeline
# Initialisation logger
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
app = Flask(__name__)
refiner_manager = EntityRefinerManager()
analyzer = None
allow_list_terms = set()
try:
logger.info("--- Presidio Analyzer Service Starting (Architecture Modulaire) ---")
config_loader = ConfigLoader()
try:
config = config_loader.load_config("main.yaml")
logger.info("✅ Configuration modulaire chargée avec succès")
# Normalisation douce de l'allow_list (préserve la structure des mots)
allow_list_terms = set(term.lower().strip() for term in config.get('allow_list', []))
logger.info(f"✅ Allow list chargée avec {len(allow_list_terms)} termes")
recognizers_count = len(config.get('recognizer_registry', {}).get('recognizers', []))
logger.info(f"📊 Nombre de recognizers chargés: {recognizers_count}")
import tempfile
# Écriture fichier temporaire config pour Presidio
with tempfile.NamedTemporaryFile(mode='w', suffix='.yaml', delete=False, encoding='utf-8') as tmp_file:
yaml.dump(config, tmp_file, default_flow_style=False, allow_unicode=True)
temp_config_path = tmp_file.name
with open(temp_config_path, 'r', encoding='utf-8') as f:
temp_content = f.read()
logger.info(f"🔍 Contenu du fichier temporaire COMPLET:\n{temp_content[:1000]}")
if 'nlp_configuration' in config:
logger.info("✅ nlp_configuration trouvée")
else:
logger.warning("❌ nlp_configuration MANQUANTE dans la config finale")
provider = AnalyzerEngineProvider(analyzer_engine_conf_file=temp_config_path)
analyzer = provider.create_engine()
os.unlink(temp_config_path)
except Exception as e:
logger.error(f"❌ Erreur avec la config modulaire: {e}")
logger.warning("🔄 Fallback vers default.yaml")
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
provider = AnalyzerEngineProvider(analyzer_engine_conf_file=CONFIG_FILE_PATH)
analyzer = provider.create_engine()
logger.info(f"Analyzer ready. Languages: {analyzer.supported_languages}")
except Exception as e:
logger.exception("Error during AnalyzerEngine initialization.")
analyzer = None
def normalize_label(text: str) -> str:
# Règles générales de normalisation pour gérer tous les cas
text = text.strip().lower()
# 1. Supprimer parenthèses et leur contenu
text = re.sub(r'\([^)]*\)', '', text)
# 2. Supprimer virgules et points suivis d'un espace
text = re.sub(r'[,.] ', ' ', text)
# 3. Supprimer points collés (ex: "Dr.Marie" -> "Dr Marie")
text = re.sub(r'\.(\w)', r' \1', text)
# 4. Supprimer tirets collés aux espaces SEULEMENT (garder les tirets dans les mots composés)
text = re.sub(r'- ', ' ', text) # "expert- comptable" -> "expert comptable"
text = re.sub(r' -', ' ', text) # "expert -comptable" -> "expert comptable"
# 5. Supprimer deux-points et ce qui suit (ex: "n° IEC: 567890" -> "n° IEC")
text = re.sub(r':.*$', '', text)
# 6. Normaliser les espaces multiples
text = re.sub(r'\s+', ' ', text)
# 7. Normalisation finale : garder lettres, chiffres, espaces ET tirets pour mots composés
cleaned = re.sub(r'[^\w\s-]', '', text)
# 8. Nettoyer les espaces en début/fin
return cleaned.strip()
def filter_by_category(results, mode):
"""Filtre les résultats selon la catégorie sélectionnée"""
if mode == "pii_business":
return results # Tout
# Définir les entités PII (Données personnelles)
pii_entities = {
# Données personnelles de base
'PERSONNE', 'PERSON', 'DATE', 'DATE_TIME',
'EMAIL_ADDRESS', 'ADRESSE_EMAIL', 'PHONE_NUMBER', 'TELEPHONE',
'CREDIT_CARD', 'IBAN', 'ADRESSE_IP',
# Adresses personnelles
'ADRESSE', 'ADRESSE_FRANCAISE', 'ADRESSE_BELGE', 'LOCATION',
# Téléphones personnels
'TELEPHONE_FRANCAIS', 'TELEPHONE_BELGE',
# Documents d'identité personnels
'NUMERO_SECURITE_SOCIALE_FRANCAIS', 'REGISTRE_NATIONAL_BELGE',
'CARTE_IDENTITE_FRANCAISE', 'CARTE_IDENTITE_BELGE',
'PASSEPORT_FRANCAIS', 'PASSEPORT_BELGE',
'PERMIS_CONDUIRE_FRANCAIS',
# Données financières personnelles
'COMPTE_BANCAIRE_FRANCAIS',
# Données sensibles RGPD
'HEALTH_DATA', 'DONNEES_SANTE',
'SEXUAL_ORIENTATION', 'ORIENTATION_SEXUELLE',
'POLITICAL_OPINIONS', 'OPINIONS_POLITIQUES',
'BIOMETRIC_DATA', 'DONNEES_BIOMETRIQUES',
'RGPD_FINANCIAL_DATA', 'DONNEES_FINANCIERES_RGPD',
# Identifiants personnels
'IDENTIFIANT_PERSONNEL'
}
# Définir les entités Business (Données d'entreprise)
business_entities = {
# Organisations et sociétés
'ORGANISATION', 'ORGANIZATION',
'SOCIETE_FRANCAISE', 'SOCIETE_BELGE',
# Identifiants fiscaux et d'entreprise
'TVA_FRANCAISE', 'TVA_BELGE',
'NUMERO_FISCAL_FRANCAIS', 'SIRET_SIREN_FRANCAIS',
'NUMERO_ENTREPRISE_BELGE',
# Identifiants professionnels
'ID_PROFESSIONNEL_BELGE',
# Données commerciales
'MARKET_SHARE', 'SECRET_COMMERCIAL',
'REFERENCE_CONTRAT', 'MONTANT_FINANCIER',
# Données techniques d'entreprise
'CLE_API_SECRETE'
}
# Définir les entités mixtes (PII + Business)
mixed_entities = {
# Données pouvant être personnelles ou professionnelles
'TITRE_CIVILITE', 'DONNEES_PROFESSIONNELLES',
'LOCALISATION_GPS', 'URL_IDENTIFIANT'
}
if mode == "pii":
# Inclure PII + mixtes
allowed_entities = pii_entities | mixed_entities
return [r for r in results if r.entity_type in allowed_entities]
elif mode == "business":
# Inclure Business + mixtes
allowed_entities = business_entities | mixed_entities
return [r for r in results if r.entity_type in allowed_entities]
# Par défaut, retourner tous les résultats
return results
# Remplacer ligne 18
pipeline = AnalysisPipeline()
# Modifier la fonction analyze_text (lignes 73-105)
@app.route("/analyze", methods=["POST"])
def analyze_text():
if not analyzer:
return jsonify({"error": "Analyzer engine is not available. Check startup logs."}), 500
try:
data = request.get_json(force=True)
text_to_analyze = data.get("text", "")
language = data.get("language", "fr")
mode = data.get("mode", "pii_business") # Nouveau paramètre
if not text_to_analyze:
return jsonify({"error": "text field is missing or empty"}), 400
# Analyse brute
raw_results = analyzer.analyze(text=text_to_analyze, language=language)
# Filtrer selon la catégorie
filtered_results = filter_by_category(raw_results, mode)
# Pipeline modulaire complet
final_results = pipeline.process(text_to_analyze, filtered_results, allow_list_terms)
response_data = [res.to_dict() for res in final_results]
return make_response(jsonify(response_data), 200)
except Exception as e:
logger.exception("Error processing analysis")
return jsonify({"error": str(e)}), 500
@app.route("/health", methods=["GET"])
def health_check():
if analyzer:
return jsonify({
"status": "healthy",
"languages": analyzer.supported_languages,
"version": "2.0.0"
}), 200
else:
return jsonify({"status": "unhealthy", "error": "Analyzer not initialized"}), 503
def load_replacements():
"""Charge les configurations d'anonymisation depuis YAML"""
try:
config_path = "conf/anonymization/replacements.yaml"
if not os.path.exists(config_path):
logger.warning(f"❌ Fichier de configuration non trouvé: {config_path}")
return {}
with open(config_path, "r", encoding="utf-8") as f:
config = yaml.safe_load(f)
if not config:
logger.warning("❌ Fichier de configuration vide")
return {}
anonymizer_config = config.get("anonymizer_config", {})
replacements = anonymizer_config.get("replacements", {})
if not replacements:
logger.warning("❌ Aucun remplacement trouvé dans la configuration")
return {}
operators = {}
for entity_type, replacement_value in replacements.items():
try:
operators[entity_type] = OperatorConfig("replace", {"new_value": replacement_value})
except Exception as e:
logger.error(f"❌ Erreur lors création opérateur {entity_type}: {e}")
continue
logger.info(f"✅ Loaded {len(operators)} replacement operators from config")
return operators
except Exception as e:
logger.error(f"❌ Failed to load replacements config: {e}")
return {}
# Initialisation anonymizer et opérateurs
try:
anonymizer = AnonymizerEngine()
logger.info("✅ Anonymizer engine initialized successfully")
replacement_operators = load_replacements()
if replacement_operators:
logger.info(f"✅ Loaded {len(replacement_operators)} custom replacement operators")
else:
logger.warning("⚠️ Aucun opérateur remplacement chargé, fallback par défaut")
replacement_operators = {}
except Exception as e:
logger.error(f"❌ Anonymizer initialization failed: {e}")
anonymizer = None
replacement_operators = {}
@app.route("/anonymize", methods=["POST"])
def anonymize_text():
logger.error("🚨 ENDPOINT /anonymize APPELÉ")
global anonymizer, replacement_operators
if anonymizer is None:
return jsonify({"error": "Anonymizer not initialized"}), 500
if not replacement_operators:
logger.warning("⚠️ replacement_operators non défini, rechargement...")
replacement_operators = load_replacements()
logger.info(f"🔍 Opérateurs disponibles: {list(replacement_operators.keys())}")
try:
data = request.get_json(force=True)
text_to_anonymize = data.get("text", "")
language = data.get("language", "fr")
mode = data.get("mode", "pii")
if not text_to_anonymize:
return jsonify({"error": "No text provided"}), 400
logger.info(f"🔍 Texte à anonymiser: '{text_to_anonymize}'")
entities_to_detect = get_entities_by_mode(mode) if 'get_entities_by_mode' in globals() else None
analyzer_results = analyzer.analyze(
text=text_to_anonymize,
language=language,
entities=entities_to_detect
)
logger.info(f"🔍 Entités détectées: {[(r.entity_type, text_to_anonymize[r.start:r.end], r.score) for r in analyzer_results]}")
filtered_results = []
for res in analyzer_results:
ent_text = text_to_anonymize[res.start:res.end].strip()
ent_text_norm = normalize_label(ent_text)
logger.info(f"🔍 Traitement entité: {res.entity_type} = '{ent_text}' (score: {res.score})")
logger.info(f"🔍 Allow list terms: {allow_list_terms}")
# Normalisation douce du texte de l'entité (cohérente avec l'allow_list)
ent_text_normalized = ent_text.lower().strip()
logger.info(f"🔍 Texte normalisé: '{ent_text_normalized}'")
# Vérifier si l'entité est dans l'allow-list (correspondance exacte)
is_allowed = ent_text_normalized in allow_list_terms
if is_allowed:
logger.info(f"✅ Entité '{ent_text}' ignorée (dans allow list)")
continue
refined_positions = refiner_manager.refine_entity(text_to_anonymize, res.entity_type, res.start, res.end)
if refined_positions is None:
logger.info(f"❌ Entité {res.entity_type} supprimée par le refiner")
continue
res.start, res.end = refined_positions
filtered_results.append(res)
logger.info(f"✅ Entité {res.entity_type} conservée après refinement")
logger.info(f"🔍 Entités finales pour anonymisation: {[(r.entity_type, text_to_anonymize[r.start:r.end]) for r in filtered_results]}")
operators_to_use = replacement_operators if replacement_operators else {}
logger.info(f"🔍 Opérateurs utilisés: {list(operators_to_use.keys())}")
anonymized_result = anonymizer.anonymize(
text=text_to_anonymize,
analyzer_results=filtered_results,
operators=operators_to_use
)
logger.info(f"🔍 Résultat anonymisation: '{anonymized_result.text}'")
return jsonify({
"original_text": text_to_anonymize,
"anonymized_text": anonymized_result.text,
"entities_found": [
{
"entity_type": result.entity_type,
"start": result.start,
"end": result.end,
"score": result.score
} for result in filtered_results
],
"mode": mode
})
except Exception as e:
logger.error(f"Error during anonymization: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5001)