118 lines
5.0 KiB
Python
118 lines
5.0 KiB
Python
import os
|
|
import logging
|
|
import yaml
|
|
from flask import Flask, request, jsonify, make_response
|
|
|
|
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
|
|
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
|
from presidio_analyzer.predefined_recognizers import (
|
|
CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer,
|
|
MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer
|
|
)
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
logger = logging.getLogger(__name__)
|
|
|
|
app = Flask(__name__)
|
|
|
|
PREDEFINED_RECOGNIZERS_MAP = {
|
|
"SpacyRecognizer": SpacyRecognizer,
|
|
"CreditCardRecognizer": CreditCardRecognizer,
|
|
"CryptoRecognizer": CryptoRecognizer,
|
|
"DateRecognizer": DateRecognizer,
|
|
"IpRecognizer": IpRecognizer,
|
|
"MedicalLicenseRecognizer": MedicalLicenseRecognizer,
|
|
"UrlRecognizer": UrlRecognizer,
|
|
}
|
|
|
|
analyzer = None
|
|
try:
|
|
logger.info("--- Presidio Analyzer Service Starting ---")
|
|
|
|
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
|
|
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
|
|
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
|
|
config = yaml.safe_load(f)
|
|
logger.info("Configuration file loaded successfully.")
|
|
|
|
logger.info("Creating NLP engine provider...")
|
|
provider = NlpEngineProvider(nlp_configuration=config)
|
|
|
|
logger.info("Creating and populating recognizer registry from config file...")
|
|
registry = RecognizerRegistry()
|
|
|
|
# === CORRECTION DÉFINITIVE : ASSURER UN REGISTRE PROPRE ===
|
|
logger.info("Removing any default recognizers to ensure a clean slate...")
|
|
registry.remove_all_recognizers()
|
|
|
|
supported_languages = config.get("supported_languages", ["en"])
|
|
|
|
# Construire les détecteurs personnalisés
|
|
custom_recognizers = {}
|
|
for recognizer_conf in config.get("recognizers", []):
|
|
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
|
|
custom_recognizers[recognizer_conf['name']] = PatternRecognizer(
|
|
supported_entity=recognizer_conf['entity_name'],
|
|
name=recognizer_conf['name'],
|
|
supported_language=recognizer_conf['supported_language'],
|
|
patterns=patterns,
|
|
context=recognizer_conf.get('context')
|
|
)
|
|
|
|
# Activer les détecteurs listés dans la configuration
|
|
for recognizer_name in config.get("recognizer_registry", []):
|
|
if recognizer_name in custom_recognizers:
|
|
registry.add_recognizer(custom_recognizers[recognizer_name])
|
|
logger.info(f"Loaded CUSTOM recognizer: {recognizer_name}")
|
|
|
|
elif recognizer_name in PREDEFINED_RECOGNIZERS_MAP:
|
|
recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name]
|
|
for lang in supported_languages:
|
|
# Le SpacyRecognizer est un cas spécial, il n'a pas de paramètre de langue
|
|
if recognizer_class == SpacyRecognizer:
|
|
if 'SpacyRecognizer_added' not in locals(): # Pour ne l'ajouter qu'une seule fois
|
|
registry.add_recognizer(recognizer_class(supported_entities=config.get("spacy_entities", [])))
|
|
logger.info(f"Loaded PREDEFINED singleton recognizer: {recognizer_name}")
|
|
SpacyRecognizer_added = True
|
|
else:
|
|
instance = recognizer_class(supported_language=lang)
|
|
registry.add_recognizer(instance)
|
|
if recognizer_class != SpacyRecognizer:
|
|
logger.info(f"Loaded PREDEFINED recognizer '{recognizer_name}' for languages: {supported_languages}")
|
|
|
|
else:
|
|
logger.warning(f"Recognizer '{recognizer_name}' from registry list was not found.")
|
|
|
|
|
|
logger.info("Initializing AnalyzerEngine with custom components...")
|
|
analyzer = AnalyzerEngine(
|
|
nlp_engine=provider.create_engine(),
|
|
registry=registry,
|
|
supported_languages=supported_languages
|
|
)
|
|
analyzer.set_allow_list(config.get("allow_list", []))
|
|
|
|
logger.info("--- Presidio Analyzer Service Ready ---")
|
|
|
|
except Exception as e:
|
|
logger.exception("FATAL: Error during AnalyzerEngine initialization.")
|
|
analyzer = None
|
|
|
|
# Le reste du fichier Flask est identique
|
|
@app.route('/analyze', methods=['POST'])
|
|
def analyze_text():
|
|
if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500
|
|
try:
|
|
data = request.get_json(force=True)
|
|
text = data.get("text", "")
|
|
lang = data.get("language", "fr")
|
|
if not text: return jsonify({"error": "text field is missing"}), 400
|
|
results = analyzer.analyze(text=text, language=lang)
|
|
return make_response(jsonify([res.to_dict() for res in results]), 200)
|
|
except Exception as e:
|
|
logger.exception("Error during analysis request.")
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
if __name__ == '__main__':
|
|
app.run(host='0.0.0.0', port=5001)
|