Files
Presidio/app.py
2025-06-23 16:50:08 +02:00

118 lines
5.0 KiB
Python

import os
import logging
import yaml
from flask import Flask, request, jsonify, make_response
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_analyzer.predefined_recognizers import (
CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer,
MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer
)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = Flask(__name__)
PREDEFINED_RECOGNIZERS_MAP = {
"SpacyRecognizer": SpacyRecognizer,
"CreditCardRecognizer": CreditCardRecognizer,
"CryptoRecognizer": CryptoRecognizer,
"DateRecognizer": DateRecognizer,
"IpRecognizer": IpRecognizer,
"MedicalLicenseRecognizer": MedicalLicenseRecognizer,
"UrlRecognizer": UrlRecognizer,
}
analyzer = None
try:
logger.info("--- Presidio Analyzer Service Starting ---")
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
logger.info("Configuration file loaded successfully.")
logger.info("Creating NLP engine provider...")
provider = NlpEngineProvider(nlp_configuration=config)
logger.info("Creating and populating recognizer registry from config file...")
registry = RecognizerRegistry()
# === CORRECTION DÉFINITIVE : ASSURER UN REGISTRE PROPRE ===
logger.info("Removing any default recognizers to ensure a clean slate...")
registry.remove_all_recognizers()
supported_languages = config.get("supported_languages", ["en"])
# Construire les détecteurs personnalisés
custom_recognizers = {}
for recognizer_conf in config.get("recognizers", []):
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
custom_recognizers[recognizer_conf['name']] = PatternRecognizer(
supported_entity=recognizer_conf['entity_name'],
name=recognizer_conf['name'],
supported_language=recognizer_conf['supported_language'],
patterns=patterns,
context=recognizer_conf.get('context')
)
# Activer les détecteurs listés dans la configuration
for recognizer_name in config.get("recognizer_registry", []):
if recognizer_name in custom_recognizers:
registry.add_recognizer(custom_recognizers[recognizer_name])
logger.info(f"Loaded CUSTOM recognizer: {recognizer_name}")
elif recognizer_name in PREDEFINED_RECOGNIZERS_MAP:
recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name]
for lang in supported_languages:
# Le SpacyRecognizer est un cas spécial, il n'a pas de paramètre de langue
if recognizer_class == SpacyRecognizer:
if 'SpacyRecognizer_added' not in locals(): # Pour ne l'ajouter qu'une seule fois
registry.add_recognizer(recognizer_class(supported_entities=config.get("spacy_entities", [])))
logger.info(f"Loaded PREDEFINED singleton recognizer: {recognizer_name}")
SpacyRecognizer_added = True
else:
instance = recognizer_class(supported_language=lang)
registry.add_recognizer(instance)
if recognizer_class != SpacyRecognizer:
logger.info(f"Loaded PREDEFINED recognizer '{recognizer_name}' for languages: {supported_languages}")
else:
logger.warning(f"Recognizer '{recognizer_name}' from registry list was not found.")
logger.info("Initializing AnalyzerEngine with custom components...")
analyzer = AnalyzerEngine(
nlp_engine=provider.create_engine(),
registry=registry,
supported_languages=supported_languages
)
analyzer.set_allow_list(config.get("allow_list", []))
logger.info("--- Presidio Analyzer Service Ready ---")
except Exception as e:
logger.exception("FATAL: Error during AnalyzerEngine initialization.")
analyzer = None
# Le reste du fichier Flask est identique
@app.route('/analyze', methods=['POST'])
def analyze_text():
if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500
try:
data = request.get_json(force=True)
text = data.get("text", "")
lang = data.get("language", "fr")
if not text: return jsonify({"error": "text field is missing"}), 400
results = analyzer.analyze(text=text, language=lang)
return make_response(jsonify([res.to_dict() for res in results]), 200)
except Exception as e:
logger.exception("Error during analysis request.")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5001)