Update app.py

This commit is contained in:
Nacim
2025-06-23 15:35:10 +02:00
committed by GitHub
parent 8319667b27
commit 81bdc02722

74
app.py
View File

@@ -3,8 +3,8 @@ import logging
import yaml import yaml
from flask import Flask, request, jsonify, make_response from flask import Flask, request, jsonify, make_response
# Import des classes nécessaires de Presidio from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
from presidio_analyzer import AnalyzerEngine from presidio_analyzer.nlp_engine import NlpEngineProvider
# Configuration du logging # Configuration du logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
@@ -13,36 +13,70 @@ logger = logging.getLogger(__name__)
# Initialisation de l'application Flask # Initialisation de l'application Flask
app = Flask(__name__) app = Flask(__name__)
# --- LAISSER PRESIDIO GÉRER L'INITIALISATION --- # --- Initialisation Globale de l'Analyseur ---
# L'AnalyzerEngine, lorsqu'il est initialisé sans arguments, va automatiquement :
# 1. Chercher la variable d'environnement PRESIDIO_ANALYZER_CONFIG_FILE.
# 2. Lire le fichier de configuration (votre default.yaml).
# 3. Créer et configurer tous les composants (moteur NLP, recognizers, etc.).
analyzer = None analyzer = None
try: try:
logger.info("Initializing AnalyzerEngine using configuration from environment variable...") logger.info("--- Presidio Analyzer Service Starting ---")
analyzer = AnalyzerEngine()
logger.info("AnalyzerEngine initialized successfully.") # 1. Charger la configuration depuis le fichier YAML
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
logger.info("Configuration file loaded successfully.")
# 2. Créer le fournisseur de moteur NLP avec TOUTE la configuration
logger.info("Creating NLP engine provider...")
provider = NlpEngineProvider(nlp_configuration=config)
# 3. Créer le registre de recognizers
logger.info("Creating and populating recognizer registry...")
registry = RecognizerRegistry()
# On charge les recognizers par défaut pour les langues supportées
registry.load_predefined_recognizers(languages=config.get("supported_languages"))
# 4. Charger les recognizers personnalisés depuis la configuration
custom_recognizers_conf = config.get("recognizers", [])
for recognizer_conf in custom_recognizers_conf:
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
custom_recognizer = PatternRecognizer(
supported_entity=recognizer_conf['entity_name'],
name=recognizer_conf['name'],
supported_language=recognizer_conf['supported_language'],
patterns=patterns,
context=recognizer_conf.get('context')
)
registry.add_recognizer(custom_recognizer)
logger.info(f"Loaded custom recognizer: {custom_recognizer.name}")
# 5. Créer l'AnalyzerEngine avec tous les composants
logger.info("Initializing AnalyzerEngine with custom components...")
analyzer = AnalyzerEngine(
nlp_engine=provider.create_engine(),
registry=registry,
supported_languages=config.get("supported_languages")
)
logger.info("--- Presidio Analyzer Service Ready ---")
except Exception as e: except Exception as e:
logger.exception("FATAL: Error initializing AnalyzerEngine from configuration.") logger.exception("FATAL: Error during AnalyzerEngine initialization.")
# On s'assure que l'analyzer est None pour que les requêtes échouent proprement analyzer = None # S'assurer que l'analyzer est None en cas d'échec
analyzer = None
@app.route('/analyze', methods=['POST']) @app.route('/analyze', methods=['POST'])
def analyze_text(): def analyze_text():
if not analyzer: if not analyzer:
return jsonify({"error": "Analyzer engine not initialized. Check startup logs."}), 500 return jsonify({"error": "Analyzer engine is not available. Check startup logs for errors."}), 500
try: try:
data = request.get_json(force=True) data = request.get_json(force=True)
text_to_analyze = data.get("text", "") text_to_analyze = data.get("text", "")
language = data.get("language", "en") language = data.get("language", "fr") # Mettre 'fr' par défaut
if not text_to_analyze: if not text_to_analyze:
return jsonify({"error": "text field is missing or empty"}), 400 return jsonify({"error": "text field is missing or empty"}), 400
# L'allow list est chargée par l'AnalyzerEngine depuis le default.yaml # L'allow list est chargée directement depuis la configuration de l'Analyzer
# car c'est une fonctionnalité intégrée.
results = analyzer.analyze( results = analyzer.analyze(
text=text_to_analyze, text=text_to_analyze,
language=language language=language
@@ -51,9 +85,11 @@ def analyze_text():
response_data = [res.to_dict() for res in results] response_data = [res.to_dict() for res in results]
return make_response(jsonify(response_data), 200) return make_response(jsonify(response_data), 200)
except Exception as e: except Exception as e:
logger.exception("Error during analysis request.") logger.exception(f"Error during analysis request for language '{language}'.")
# Renvoyer l'erreur spécifique de Presidio si elle est informative
if "No matching recognizers" in str(e):
return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400
return jsonify({"error": str(e)}), 500 return jsonify({"error": str(e)}), 500
if __name__ == '__main__': if __name__ == '__main__':
# Pour un test local sans gunicorn
app.run(host='0.0.0.0', port=5001) app.run(host='0.0.0.0', port=5001)