Files
Presidio/app.py
2025-06-23 15:17:29 +02:00

102 lines
4.3 KiB
Python

import os
import logging
import yaml
from flask import Flask, request, jsonify, make_response
# Import des classes nécessaires de Presidio
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
from presidio_analyzer.nlp_engine import NlpEngineProvider
# Configuration du logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- CHARGEMENT MANUEL ET EXPLICITE DE LA CONFIGURATION ---
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
config = {}
try:
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
logger.info("Configuration file loaded successfully.")
except Exception as e:
logger.exception(f"Could not load or parse configuration file at {CONFIG_FILE_PATH}")
# En cas d'échec, on continue avec une config vide pour ne pas planter, mais le service sera limité.
config = {}
# On récupère les langues supportées depuis la config pour les utiliser partout
supported_languages_from_config = config.get("supported_languages", ["en"])
logger.info(f"Languages supported according to config: {supported_languages_from_config}")
# Création du fournisseur de moteur NLP
logger.info("Creating NLP engine provider...")
nlp_engine_provider = NlpEngineProvider(nlp_configuration=config.get("nlp_engine_configuration"))
nlp_engine = nlp_engine_provider.create_engine()
logger.info(f"NLP engine created with models for: {nlp_engine.get_supported_languages()}")
# Création du registre de recognizers
logger.info("Creating and populating recognizer registry...")
registry = RecognizerRegistry()
# On initialise le registre avec TOUTES les langues supportées
registry.load_predefined_recognizers(languages=supported_languages_from_config)
# Ajout des recognizers personnalisés définis dans le YAML
custom_recognizers_conf = config.get("recognizers", [])
for recognizer_conf in custom_recognizers_conf:
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
custom_recognizer = PatternRecognizer(
supported_entity=recognizer_conf['entity_name'],
name=recognizer_conf['name'],
supported_language=recognizer_conf['supported_language'],
patterns=patterns,
context=recognizer_conf.get('context')
)
registry.add_recognizer(custom_recognizer)
logger.info(f"Loaded custom recognizer: {custom_recognizer.name}")
# Préparation de l'allow_list (simple liste de mots)
allow_list_config = config.get("allow_list", [])
allow_list_terms = [item if isinstance(item, str) else item.get('text') for item in allow_list_config if item]
if allow_list_terms:
logger.info(f"Prepared {len(allow_list_terms)} terms for the allow list.")
# Initialisation de l'application Flask
app = Flask(__name__)
# Initialisation du moteur Presidio Analyzer
logger.info("Initializing AnalyzerEngine with custom configuration...")
analyzer = AnalyzerEngine(
nlp_engine=nlp_engine,
registry=registry,
supported_languages=supported_languages_from_config, # On s'assure de la cohérence ici aussi
default_score_threshold=config.get("ner_model_configuration", {}).get("confidence_threshold", {}).get("default", 0.35)
)
logger.info("AnalyzerEngine initialized successfully.")
@app.route('/analyze', methods=['POST'])
def analyze_text():
try:
data = request.get_json(force=True)
text_to_analyze = data.get("text", "")
language = data.get("language", "en")
if not text_to_analyze:
return jsonify({"error": "text field is missing or empty"}), 400
# On passe directement la liste de mots à ignorer au paramètre 'allow_list'
results = analyzer.analyze(
text=text_to_analyze,
language=language,
allow_list=allow_list_terms
)
response_data = [res.to_dict() for res in results]
return make_response(jsonify(response_data), 200)
except Exception as e:
logger.exception("Error during analysis.")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5001)