Files
Presidio/app.py
2025-06-23 16:34:12 +02:00

131 lines
5.8 KiB
Python

import os
import logging
import yaml
from flask import Flask, request, jsonify, make_response
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
from presidio_analyzer.nlp_engine import NlpEngineProvider
# On importe les classes des détecteurs prédéfinis que l'on veut pouvoir utiliser depuis le YAML
from presidio_analyzer.predefined_recognizers import (
CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer,
MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer
)
# Configuration du logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialisation de l'application Flask
app = Flask(__name__)
# --- Dictionnaire pour mapper les noms du YAML aux classes Python ---
PREDEFINED_RECOGNIZERS_MAP = {
"SpacyRecognizer": SpacyRecognizer,
"CreditCardRecognizer": CreditCardRecognizer,
"CryptoRecognizer": CryptoRecognizer,
"DateRecognizer": DateRecognizer,
"IpRecognizer": IpRecognizer,
"MedicalLicenseRecognizer": MedicalLicenseRecognizer,
"UrlRecognizer": UrlRecognizer,
}
# --- Initialisation Globale de l'Analyseur ---
analyzer = None
try:
logger.info("--- Presidio Analyzer Service Starting ---")
# 1. Charger la configuration depuis le fichier YAML
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f)
logger.info("Configuration file loaded successfully.")
# 2. Créer le fournisseur de moteur NLP
logger.info("Creating NLP engine provider...")
provider = NlpEngineProvider(nlp_configuration=config)
# 3. Créer le registre de recognizers EN SUIVANT LE YAML
logger.info("Creating and populating recognizer registry from config file...")
registry = RecognizerRegistry()
supported_languages = config.get("supported_languages", ["en"])
# === DÉBUT DE LA CORRECTION MAJEURE ===
# Étape A: On pré-construit tous les détecteurs personnalisés ("custom") définis dans la section 'recognizers'
custom_recognizers = {}
for recognizer_conf in config.get("recognizers", []):
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
custom_recognizer = PatternRecognizer(
supported_entity=recognizer_conf['entity_name'],
name=recognizer_conf['name'],
supported_language=recognizer_conf['supported_language'],
patterns=patterns,
context=recognizer_conf.get('context')
)
custom_recognizers[recognizer_conf['name']] = custom_recognizer
# Étape B: On parcourt la liste 'recognizer_registry' pour activer les détecteurs demandés
for recognizer_name in config.get("recognizer_registry", []):
# Cas 1: Le détecteur est dans notre liste de détecteurs personnalisés
if recognizer_name in custom_recognizers:
registry.add_recognizer(custom_recognizers[recognizer_name])
logger.info(f"Loaded custom recognizer from registry list: {recognizer_name}")
# Cas 2: Le détecteur est un détecteur prédéfini connu
elif recognizer_name in PREDEFINED_RECOGNIZERS_MAP:
recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name]
# On crée une instance pour chaque langue supportée (en, fr)
for lang in supported_languages:
# CORRECTION : On utilise le mot-clé au singulier 'supported_language'
instance = recognizer_class(supported_language=lang)
registry.add_recognizer(instance)
logger.info(f"Loaded predefined recognizer '{recognizer_name}' for languages: {supported_languages}")
else:
logger.warning(f"Recognizer '{recognizer_name}' from registry list was not found in custom or predefined lists.")
# === FIN DE LA CORRECTION MAJEURE ===
# 4. Créer l'AnalyzerEngine avec tous les composants
logger.info("Initializing AnalyzerEngine with custom components...")
analyzer = AnalyzerEngine(
nlp_engine=provider.create_engine(),
registry=registry,
supported_languages=supported_languages
)
analyzer.set_allow_list(config.get("allow_list", []))
logger.info("--- Presidio Analyzer Service Ready ---")
except Exception as e:
logger.exception("FATAL: Error during AnalyzerEngine initialization.")
analyzer = None
# Le reste du fichier Flask reste identique...
@app.route('/analyze', methods=['POST'])
def analyze_text():
if not analyzer:
return jsonify({"error": "Analyzer engine is not available. Check startup logs for errors."}), 500
try:
data = request.get_json(force=True)
text_to_analyze = data.get("text", "")
default_lang = analyzer.supported_languages[0] if analyzer.supported_languages else "en"
language = data.get("language", default_lang)
if not text_to_analyze:
return jsonify({"error": "text field is missing or empty"}), 400
results = analyzer.analyze(text=text_to_analyze, language=language)
response_data = [res.to_dict() for res in results]
return make_response(jsonify(response_data), 200)
except Exception as e:
logger.exception(f"Error during analysis request for language '{language}'.")
if "No matching recognizers" in str(e):
return jsonify({"error": f"No recognizers available for language '{language}'. Please ensure the language model and recognizers are configured."}), 400
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5001)