92 lines
3.9 KiB
Python
92 lines
3.9 KiB
Python
import os
|
|
import logging
|
|
import yaml
|
|
from flask import Flask, request, jsonify, make_response
|
|
|
|
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
|
|
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
|
from presidio_analyzer.predefined_recognizers import SpacyRecognizer
|
|
|
|
# Configuration du logging
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Initialisation de l'application Flask
|
|
app = Flask(__name__)
|
|
|
|
# --- Initialisation Globale de l'Analyseur ---
|
|
analyzer = None
|
|
try:
|
|
logger.info("--- Presidio Analyzer Service Starting ---")
|
|
|
|
# 1. Charger la configuration depuis le fichier YAML
|
|
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
|
|
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
|
|
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
|
|
config = yaml.safe_load(f)
|
|
logger.info("Configuration file loaded successfully.")
|
|
|
|
# 2. Créer le fournisseur de moteur NLP
|
|
logger.info("Creating NLP engine provider...")
|
|
provider = NlpEngineProvider(nlp_configuration=config)
|
|
|
|
# 3. Créer un registre de recognizers VIDE
|
|
logger.info("Creating a clean RecognizerRegistry...")
|
|
registry = RecognizerRegistry()
|
|
|
|
# 4. Charger les recognizers personnalisés (définis sous la clé 'recognizers')
|
|
logger.info("Loading custom recognizers from YAML...")
|
|
custom_recognizers_conf = config.get("recognizers", [])
|
|
for recognizer_conf in custom_recognizers_conf:
|
|
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
|
|
custom_recognizer = PatternRecognizer(
|
|
supported_entity=recognizer_conf['entity_name'],
|
|
name=recognizer_conf['name'],
|
|
supported_language=recognizer_conf['supported_language'],
|
|
patterns=patterns,
|
|
context=recognizer_conf.get('context')
|
|
)
|
|
# On ajoute UNIQUEMENT les détecteurs customs définis pour le français
|
|
if recognizer_conf['supported_language'] == 'fr':
|
|
registry.add_recognizer(custom_recognizer)
|
|
logger.info(f"Loaded and registered custom recognizer: {custom_recognizer.name}")
|
|
|
|
# 5. Ajouter le SpacyRecognizer, qui est un cas spécial pour les entités de base
|
|
registry.add_recognizer(SpacyRecognizer(supported_language="en"))
|
|
registry.add_recognizer(SpacyRecognizer(supported_language="fr"))
|
|
logger.info("Registered SpacyRecognizer for 'en' and 'fr'.")
|
|
|
|
# 6. Créer l'AnalyzerEngine
|
|
logger.info("Initializing AnalyzerEngine with custom components...")
|
|
analyzer = AnalyzerEngine(
|
|
nlp_engine=provider.create_engine(),
|
|
registry=registry,
|
|
supported_languages=config.get("supported_languages", ["en", "fr"])
|
|
)
|
|
analyzer.set_allow_list(config.get("allow_list", []))
|
|
|
|
logger.info("--- Presidio Analyzer Service Ready ---")
|
|
logger.info(f"Final supported languages in registry: {registry.supported_languages}")
|
|
|
|
except Exception as e:
|
|
logger.exception("FATAL: Error during AnalyzerEngine initialization.")
|
|
analyzer = None
|
|
|
|
# Le reste du fichier Flask reste identique...
|
|
@app.route('/analyze', methods=['POST'])
|
|
def analyze_text():
|
|
if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500
|
|
try:
|
|
data = request.get_json(force=True)
|
|
text = data.get("text", "")
|
|
lang = data.get("language", "fr")
|
|
if not text: return jsonify({"error": "text field is missing"}), 400
|
|
results = analyzer.analyze(text=text, language=lang)
|
|
return make_response(jsonify([res.to_dict() for res in results]), 200)
|
|
except Exception as e:
|
|
logger.exception("Error during analysis request.")
|
|
return jsonify({"error": str(e)}), 500
|
|
|
|
if __name__ == '__main__':
|
|
app.run(host='0.0.0.0', port=5001)
|