Update app.py

This commit is contained in:
Nacim
2025-06-23 15:17:29 +02:00
committed by GitHub
parent 45a2c7a092
commit 162f9f37b1

31
app.py
View File

@@ -3,13 +3,15 @@ import logging
import yaml import yaml
from flask import Flask, request, jsonify, make_response from flask import Flask, request, jsonify, make_response
# Import des classes nécessaires de Presidio
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
from presidio_analyzer.nlp_engine import NlpEngineProvider from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_analyzer.deny_list_recognizer import DenyListRecognizer
# Configuration du logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
# --- CHARGEMENT MANUEL ET EXPLICITE DE LA CONFIGURATION ---
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml") CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}") logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
@@ -18,31 +20,31 @@ try:
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f: with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
config = yaml.safe_load(f) config = yaml.safe_load(f)
logger.info("Configuration file loaded successfully.") logger.info("Configuration file loaded successfully.")
except FileNotFoundError: except Exception as e:
logger.error(f"Configuration file not found at {CONFIG_FILE_PATH}. Using default empty config.") logger.exception(f"Could not load or parse configuration file at {CONFIG_FILE_PATH}")
except yaml.YAMLError as e: # En cas d'échec, on continue avec une config vide pour ne pas planter, mais le service sera limité.
logger.error(f"Error parsing YAML configuration file: {e}. Using default empty config.") config = {}
# On récupère les langues supportées depuis la config pour les utiliser partout
supported_languages_from_config = config.get("supported_languages", ["en"]) supported_languages_from_config = config.get("supported_languages", ["en"])
logger.info(f"Languages supported according to config: {supported_languages_from_config}") logger.info(f"Languages supported according to config: {supported_languages_from_config}")
# Création du fournisseur de moteur NLP
logger.info("Creating NLP engine provider...") logger.info("Creating NLP engine provider...")
nlp_engine_provider = NlpEngineProvider(nlp_configuration=config.get("nlp_engine_configuration")) nlp_engine_provider = NlpEngineProvider(nlp_configuration=config.get("nlp_engine_configuration"))
nlp_engine = nlp_engine_provider.create_engine() nlp_engine = nlp_engine_provider.create_engine()
logger.info(f"NLP engine created with models for: {nlp_engine.get_supported_languages()}") logger.info(f"NLP engine created with models for: {nlp_engine.get_supported_languages()}")
# --- CORRECTION ICI --- # Création du registre de recognizers
# On s'assure que le registry est initialisé avec les mêmes langues que le reste
logger.info("Creating and populating recognizer registry...") logger.info("Creating and populating recognizer registry...")
registry = RecognizerRegistry() registry = RecognizerRegistry()
registry.load_predefined_recognizers(languages=supported_languages_from_config) # On utilise la variable # On initialise le registre avec TOUTES les langues supportées
logger.info(f"Recognizer registry loaded for languages: {supported_languages_from_config}") registry.load_predefined_recognizers(languages=supported_languages_from_config)
# Ajout des recognizers personnalisés # Ajout des recognizers personnalisés définis dans le YAML
custom_recognizers_conf = config.get("recognizers", []) custom_recognizers_conf = config.get("recognizers", [])
for recognizer_conf in custom_recognizers_conf: for recognizer_conf in custom_recognizers_conf:
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']] patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
custom_recognizer = PatternRecognizer( custom_recognizer = PatternRecognizer(
supported_entity=recognizer_conf['entity_name'], supported_entity=recognizer_conf['entity_name'],
name=recognizer_conf['name'], name=recognizer_conf['name'],
@@ -50,16 +52,16 @@ for recognizer_conf in custom_recognizers_conf:
patterns=patterns, patterns=patterns,
context=recognizer_conf.get('context') context=recognizer_conf.get('context')
) )
registry.add_recognizer(custom_recognizer) registry.add_recognizer(custom_recognizer)
logger.info(f"Loaded custom recognizer: {custom_recognizer.name}") logger.info(f"Loaded custom recognizer: {custom_recognizer.name}")
# Préparation de l'allow_list # Préparation de l'allow_list (simple liste de mots)
allow_list_config = config.get("allow_list", []) allow_list_config = config.get("allow_list", [])
allow_list_terms = [item if isinstance(item, str) else item.get('text') for item in allow_list_config if item] allow_list_terms = [item if isinstance(item, str) else item.get('text') for item in allow_list_config if item]
if allow_list_terms: if allow_list_terms:
logger.info(f"Prepared {len(allow_list_terms)} terms for the allow list.") logger.info(f"Prepared {len(allow_list_terms)} terms for the allow list.")
# Initialisation de l'application Flask
app = Flask(__name__) app = Flask(__name__)
# Initialisation du moteur Presidio Analyzer # Initialisation du moteur Presidio Analyzer
@@ -67,7 +69,7 @@ logger.info("Initializing AnalyzerEngine with custom configuration...")
analyzer = AnalyzerEngine( analyzer = AnalyzerEngine(
nlp_engine=nlp_engine, nlp_engine=nlp_engine,
registry=registry, registry=registry,
supported_languages=supported_languages_from_config, # On utilise la variable ici aussi supported_languages=supported_languages_from_config, # On s'assure de la cohérence ici aussi
default_score_threshold=config.get("ner_model_configuration", {}).get("confidence_threshold", {}).get("default", 0.35) default_score_threshold=config.get("ner_model_configuration", {}).get("confidence_threshold", {}).get("default", 0.35)
) )
logger.info("AnalyzerEngine initialized successfully.") logger.info("AnalyzerEngine initialized successfully.")
@@ -82,6 +84,7 @@ def analyze_text():
if not text_to_analyze: if not text_to_analyze:
return jsonify({"error": "text field is missing or empty"}), 400 return jsonify({"error": "text field is missing or empty"}), 400
# On passe directement la liste de mots à ignorer au paramètre 'allow_list'
results = analyzer.analyze( results = analyzer.analyze(
text=text_to_analyze, text=text_to_analyze,
language=language, language=language,