Update app.py
This commit is contained in:
76
app.py
76
app.py
@@ -5,100 +5,74 @@ from flask import Flask, request, jsonify, make_response
|
||||
|
||||
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry, PatternRecognizer, Pattern
|
||||
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
||||
from presidio_analyzer.predefined_recognizers import (
|
||||
CreditCardRecognizer, CryptoRecognizer, DateRecognizer, IpRecognizer,
|
||||
MedicalLicenseRecognizer, UrlRecognizer, SpacyRecognizer
|
||||
)
|
||||
from presidio_analyzer.predefined_recognizers import SpacyRecognizer
|
||||
|
||||
# Configuration du logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Initialisation de l'application Flask
|
||||
app = Flask(__name__)
|
||||
|
||||
PREDEFINED_RECOGNIZERS_MAP = {
|
||||
"SpacyRecognizer": SpacyRecognizer,
|
||||
"CreditCardRecognizer": CreditCardRecognizer,
|
||||
"CryptoRecognizer": CryptoRecognizer,
|
||||
"DateRecognizer": DateRecognizer,
|
||||
"IpRecognizer": IpRecognizer,
|
||||
"MedicalLicenseRecognizer": MedicalLicenseRecognizer,
|
||||
"UrlRecognizer": UrlRecognizer,
|
||||
}
|
||||
|
||||
# --- Initialisation Globale de l'Analyseur ---
|
||||
analyzer = None
|
||||
try:
|
||||
logger.info("--- Presidio Analyzer Service Starting ---")
|
||||
|
||||
# 1. Charger la configuration depuis le fichier YAML
|
||||
CONFIG_FILE_PATH = os.environ.get("PRESIDIO_ANALYZER_CONFIG_FILE", "conf/default.yaml")
|
||||
logger.info(f"Loading configuration from: {CONFIG_FILE_PATH}")
|
||||
with open(CONFIG_FILE_PATH, 'r', encoding='utf-8') as f:
|
||||
config = yaml.safe_load(f)
|
||||
logger.info("Configuration file loaded successfully.")
|
||||
|
||||
# 2. Créer le fournisseur de moteur NLP
|
||||
logger.info("Creating NLP engine provider...")
|
||||
provider = NlpEngineProvider(nlp_configuration=config)
|
||||
|
||||
logger.info("Creating and populating recognizer registry from config file...")
|
||||
# 3. Créer un registre de recognizers VIDE
|
||||
logger.info("Creating a clean RecognizerRegistry...")
|
||||
registry = RecognizerRegistry()
|
||||
|
||||
# === CORRECTION DÉFINITIVE : ASSURER UN REGISTRE PROPRE ===
|
||||
logger.info("Removing any default recognizers to ensure a clean slate...")
|
||||
registry.remove_all_recognizers()
|
||||
|
||||
supported_languages = config.get("supported_languages", ["en"])
|
||||
|
||||
# Construire les détecteurs personnalisés
|
||||
custom_recognizers = {}
|
||||
for recognizer_conf in config.get("recognizers", []):
|
||||
# 4. Charger les recognizers personnalisés (définis sous la clé 'recognizers')
|
||||
logger.info("Loading custom recognizers from YAML...")
|
||||
custom_recognizers_conf = config.get("recognizers", [])
|
||||
for recognizer_conf in custom_recognizers_conf:
|
||||
patterns = [Pattern(name=p['name'], regex=p['regex'], score=p['score']) for p in recognizer_conf['patterns']]
|
||||
custom_recognizers[recognizer_conf['name']] = PatternRecognizer(
|
||||
custom_recognizer = PatternRecognizer(
|
||||
supported_entity=recognizer_conf['entity_name'],
|
||||
name=recognizer_conf['name'],
|
||||
supported_language=recognizer_conf['supported_language'],
|
||||
patterns=patterns,
|
||||
context=recognizer_conf.get('context')
|
||||
)
|
||||
|
||||
# Activer les détecteurs listés dans la configuration
|
||||
for recognizer_name in config.get("recognizer_registry", []):
|
||||
if recognizer_name in custom_recognizers:
|
||||
registry.add_recognizer(custom_recognizers[recognizer_name])
|
||||
logger.info(f"Loaded CUSTOM recognizer: {recognizer_name}")
|
||||
|
||||
elif recognizer_name in PREDEFINED_RECOGNIZERS_MAP:
|
||||
recognizer_class = PREDEFINED_RECOGNIZERS_MAP[recognizer_name]
|
||||
for lang in supported_languages:
|
||||
# Le SpacyRecognizer est un cas spécial, il n'a pas de paramètre de langue
|
||||
if recognizer_class == SpacyRecognizer:
|
||||
if 'SpacyRecognizer_added' not in locals(): # Pour ne l'ajouter qu'une seule fois
|
||||
registry.add_recognizer(recognizer_class(supported_entities=config.get("spacy_entities", [])))
|
||||
logger.info(f"Loaded PREDEFINED singleton recognizer: {recognizer_name}")
|
||||
SpacyRecognizer_added = True
|
||||
else:
|
||||
instance = recognizer_class(supported_language=lang)
|
||||
registry.add_recognizer(instance)
|
||||
if recognizer_class != SpacyRecognizer:
|
||||
logger.info(f"Loaded PREDEFINED recognizer '{recognizer_name}' for languages: {supported_languages}")
|
||||
|
||||
else:
|
||||
logger.warning(f"Recognizer '{recognizer_name}' from registry list was not found.")
|
||||
# On ajoute UNIQUEMENT les détecteurs customs définis pour le français
|
||||
if recognizer_conf['supported_language'] == 'fr':
|
||||
registry.add_recognizer(custom_recognizer)
|
||||
logger.info(f"Loaded and registered custom recognizer: {custom_recognizer.name}")
|
||||
|
||||
# 5. Ajouter le SpacyRecognizer, qui est un cas spécial pour les entités de base
|
||||
registry.add_recognizer(SpacyRecognizer(supported_language="en"))
|
||||
registry.add_recognizer(SpacyRecognizer(supported_language="fr"))
|
||||
logger.info("Registered SpacyRecognizer for 'en' and 'fr'.")
|
||||
|
||||
# 6. Créer l'AnalyzerEngine
|
||||
logger.info("Initializing AnalyzerEngine with custom components...")
|
||||
analyzer = AnalyzerEngine(
|
||||
nlp_engine=provider.create_engine(),
|
||||
registry=registry,
|
||||
supported_languages=supported_languages
|
||||
supported_languages=config.get("supported_languages", ["en", "fr"])
|
||||
)
|
||||
analyzer.set_allow_list(config.get("allow_list", []))
|
||||
|
||||
logger.info("--- Presidio Analyzer Service Ready ---")
|
||||
logger.info(f"Final supported languages in registry: {registry.supported_languages}")
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("FATAL: Error during AnalyzerEngine initialization.")
|
||||
analyzer = None
|
||||
|
||||
# Le reste du fichier Flask est identique
|
||||
# Le reste du fichier Flask reste identique...
|
||||
@app.route('/analyze', methods=['POST'])
|
||||
def analyze_text():
|
||||
if not analyzer: return jsonify({"error": "Analyzer engine is not available."}), 500
|
||||
|
||||
Reference in New Issue
Block a user